
Stat 928: Statistical Learning Theory Lecture: 9

Empirical Process Theory and Oracle Inequalities

Instructor: Sham Kakade

1 Risk vs Risk

See Lecture 0 for a discussion on terminology.

2 The Union Bound / Bonferoni

Consider m events E1, . . . Em, we have P (E1∪· · ·∪Em) ≤ P (E1)+ · · ·+P (Em). In other words, with probability
1− P (E1)− · · · − P (Em), none of the events Ei (i = 1, . . . ,m) occurs.

If we assume the probability
∑
j P (Ej) is small. Union bound is relatively tight when the events Ej are independent.

P (E1 ∪ · · · ∪ Em) ≥
∑
j

P (Ej)−
∑
j 6=k

P (Ej ∩ Ek) ≥
∑
j

P (Ej)− 0.5(
∑
j

P (Ej))
2.

If Ej are correlated, then it is not tight. For example when they are completely correlated: E1 = · · · = Em, then

P (E1 ∪ · · · ∪ Em) = N−1
∑
j

P (Ej).

We will come back to this when we discuss chaining.

3 Motivation of Empirical Process

Consider learning problem with observations Zi = (Xi, Yi), prediction rule f(Xi) and loss function L(f(Xi), Yi).
Assume further that f is parameterized by θ ∈ Θ as fθ(Xi).

Example, fθ(x) = θ>x be a linear function, and L(fθ(x), y) = (θ>x− y)2 is least squares loss. In the following, we
introduce simplified notation gθ(Zi) = L(fθ(Xi), Yi). We are interested in estimating θ̂ from training data. That is, θ̂
depends on Zi.

Since we are using the training data as a surrogate of the test (true underlying) distribution, we hope training error is
similar to test error. In learning theory, we are interested in estimating the following tail quantities for some ε > 0:

P (n−1
n∑
i=1

gθ̂(Zi) ≥ Egθ̂(Z) + ε)

and

P (n−1
n∑
i=1

gθ̂(Zi) ≤ Egθ̂(Z)− ε).
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The above two quantities can be bounded using the following two quantities:

P (n−1
n∑
i=1

gθ̂(Zi) ≥ Egθ̂(Z) + ε) ≤ P [sup
θ∈Θ

(n−1
n∑
i=1

gθ(Zi)− Egθ(Z)) ≥ ε]

and

P (n−1
n∑
i=1

gθ̂(Zi) ≤ Egθ̂(Z)− ε) ≤ P [sup
θ∈Θ

(Egθ(Z)− n−1
n∑
i=1

gθ(Zi)) ≥ ε].

Notation: in the above setting the collection of random variables n−1
∑n
i=1 gθ(Zi) indexed by θ ∈ Γ is call an

empirical process. We may also call n−1
∑n
i=1 gθ(Zi)− Egθ(Z) empirical process.

For each fixed θ, n−1
∑n
i=1 gθ(Zi) − Egθ(Z) → 0 in probability, by LLN. However, in empirical process, we are

interested in uniform law of large numbers, that is the following supremum of empirical process defined as

sup
θ∈Θ
|n−1

n∑
i=1

gθ(Zi)− Egθ(Z)|

converges to zero in probability. Given training data Zn1 = {Z1, . . . , Zn}, we may let θ̂(Zn1 ) achieve the supremum
above. Then

sup
θ∈Θ
|n−1

n∑
i=1

gθ(Zi)− Egθ(Z)| = |n−1
n∑
i=1

gθ̂(Zn
1 )(Zi)− Egθ̂(Zn

1 )(Z)|,

where θ̂(Zn1 ) depends on the training data. This means that
∑n
i=1 gθ̂(Zn

1 )(Zi) is not sum of independent random
variable anymore. Supreme of empirical process is basically the worst case deviation of empirical mean (training
error) and true mean (test error) for parameter θ that is chosen based on training data.

Conceptually, as long as you select θ̂ based on training data, you need to use empirical process and uniform law of
large numbers. However, if you only consider fixed θ independent of training data, then you can use standard law of
large numbers because gθ(Zi) are independent random variable.
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