
Stat 928: Statistical Learning Theory Lecture: 10

Empirical Process Theory and Oracle Inequalities

Instructor: Sham Kakade

1 Risk vs Risk

See Lecture 0 for a discussion on terminology.

2 The Union Bound / Bonferoni

Consider m events E1, . . . Em, we have P (E1∪· · ·∪Em) ≤ P (E1)+ · · ·+P (Em). In other words, with probability
1− P (E1)− · · · − P (Em), none of the events Ei (i = 1, . . . ,m) occurs.

If we assume the probability
∑
j P (Ej) is small. Union bound is relatively tight when the events Ej are independent.

P (E1 ∪ · · · ∪ Em) ≥
∑
j

P (Ej)−
∑
j 6=k

P (Ej ∩ Ek) ≥
∑
j

P (Ej)− 0.5(
∑
j

P (Ej))
2.

If Ej are correlated, then it is not tight. For example when they are completely correlated: E1 = · · · = Em, then

P (E1 ∪ · · · ∪ Em) = N−1
∑
j

P (Ej).

We will come back to this when we discuss chaining.

3 Motivation of Empirical Process

Consider learning problem with observations Zi = (Xi, Yi), prediction rule f(Xi) and loss function L(f(Xi), Yi).
Assume further that f is parameterized by θ ∈ Θ as fθ(Xi).

Example, fθ(x) = θ>x be a linear function, and L(fθ(x), y) = (θ>x− y)2 is least squares loss. In the following, we
introduce simplified notation gθ(Zi) = L(fθ(Xi), Yi). We are interested in estimating θ̂ from training data. That is, θ̂
depends on Zi.

Since we are using the training data as a surrogate of the test (true underlying) distribution, we hope training error is
similar to test error. In learning theory, we are interested in estimating the following tail quantities for some ε > 0:

P (n−1
n∑
i=1

gθ̂(Zi) ≥ Egθ̂(Z) + ε)

and

P (n−1
n∑
i=1

gθ̂(Zi) ≤ Egθ̂(Z)− ε).
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The above two quantities can be bounded using the following two quantities:

P (n−1
n∑
i=1

gθ̂(Zi) ≥ Egθ̂(Z) + ε) ≤ P [sup
θ∈Θ

(n−1
n∑
i=1

gθ(Zi)− Egθ(Z)) ≥ ε]

and

P (n−1
n∑
i=1

gθ̂(Zi) ≤ Egθ̂(Z)− ε) ≤ P [sup
θ∈Θ

(Egθ(Z)− n−1
n∑
i=1

gθ(Zi)) ≥ ε].

Notation: in the above setting the collection of random variables n−1
∑n
i=1 gθ(Zi) indexed by θ ∈ Γ is call an

empirical process. We may also call n−1
∑n
i=1 gθ(Zi)− Egθ(Z) empirical process.

For each fixed θ, n−1
∑n
i=1 gθ(Zi) − Egθ(Z) → 0 in probability, by LLN. However, in empirical process, we are

interested in uniform law of large numbers, that is the following supremum of empirical process defined as

sup
θ∈Θ
|n−1

n∑
i=1

gθ(Zi)− Egθ(Z)|

converges to zero in probability. Given training data Zn1 = {Z1, . . . , Zn}, we may let θ̂(Zn1 ) achieve the supremum
above. Then

sup
θ∈Θ
|n−1

n∑
i=1

gθ(Zi)− Egθ(Z)| = |n−1
n∑
i=1

gθ̂(Zn
1 )(Zi)− Egθ̂(Zn

1 )(Z)|,

where θ̂(Zn1 ) depends on the training data. This means that
∑n
i=1 gθ̂(Zn

1 )(Zi) is not sum of independent random
variable anymore. Supreme of empirical process is basically the worst case deviation of empirical mean (training
error) and true mean (test error) for parameter θ that is chosen based on training data.

Conceptually, as long as you select θ̂ based on training data, you need to use empirical process and uniform law of
large numbers. However, if you only consider fixed θ independent of training data, then you can use standard law of
large numbers because gθ(Zi) are independent random variable.

4 Oracle Inequality for empirical risk minimization

Consider the empirical risk minimization algorithm:

θ̂ = arg min
θ∈Θ

n∑
i=1

gθ(Zi),

and the optimization parameter that minimizes the test error (with inifnite amount of data):

θ∗ = arg min
θ∈Θ

Egθ(Z).

We want to know how much worse is the test error performance of θ̂ compared to that of θ∗. Results of this flavor is
referred to as oracle inequality.

We can obtain simple oracle inequality using ULLN of empirical process as follows. Assume that we have the tail
bound for the empirical mean of gθ∗(Z) as:

P (n−1
n∑
i=1

gθ∗(Zi)− Egθ∗(Z) ≥ ε1) ≤ δ1(ε1)
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Assume that we have the following uniform tail bound for empiricla process for some γ ∈ [0, 1):

P (sup
θ

[−n−1
n∑
i=1

gθ(Zi) + (1− γ)Egθ(Z) + γEgθ∗(Z)] ≥ ε2) ≤ δ2(ε2)

Taking the union bound, we obtain with probability 1− δ1(ε1)− δ2(ε2),

n−1
n∑
i=1

gθ∗(Zi)− Egθ∗(Z) < ε1, [−n−1
n∑
i=1

gθ̂(Zi) + (1− γ)Egθ̂(Z) + γEgθ∗(Z)] < ε2.

Since by definition, we have

n−1
n∑
i=1

gθ̂(Zi) ≤ n
−1

n∑
i=1

gθ∗(Zi).

Therefore by adding the three inequalities:

(1− γ)Egθ̂(Z) + γEgθ∗(Z)]− Egθ∗(Z) < ε1 + ε2.

That is, we have
Egθ̂(Z) < Egθ∗(Z) + (1− γ)−1(ε1 + ε2).

If Θ contains only finite number of functions: N = |Θ|, then we can simply apply the union bound

P (sup
θ

[−n−1
n∑
i=1

gθ(Zi) + (1− γ)Egθ(Z) + γEgθ∗(Z)] ≥ ε)

≤
∑
θ∈Θ

P ([−n−1
n∑
i=1

gθ(Zi) + (1− γ)Egθ(Z) + γEgθ∗(Z)] ≥ ε)

≤|Θ| sup
θ∈Θ

P ([−n−1
n∑
i=1

gθ(Zi) + (1− γ)Egθ(Z) + γEgθ∗(Z) ≥ ε).

5 Recap: Oracle Inequality

Consider the empirical risk minimization algorithm:

θ̂ = arg min
θ∈Θ

n∑
i=1

gθ(Zi),

and the optimization parameter that minimizes the test error (with inifnite amount of data):

θ∗ = arg min
θ∈Θ

Egθ(Z).

If

P (n−1
n∑
i=1

gθ∗(Zi)− Egθ∗(Z) ≥ ε1) ≤ δ1(ε1),

which means that the training error of the optimal parameter isn’t much larger than test error.

Assume also that we have the following uniform tail bound for empiricla process for some γ ∈ [0, 1):

P (sup
θ

[−n−1
n∑
i=1

gθ(Zi) + (1− γ)Egθ(Z) + γEgθ∗(Z)] ≥ ε2) ≤ δ2(ε2),
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which means that the training error of an arbitrary inferior parametr isn’t much smaller than its test error.

Then we have oracle inequality with probability 1− δ1(ε1)− δ2(ε2),

Egθ̂(Z) < Egθ∗(Z) + (1− γ)−1(ε1 + ε2).

This means that the generalization performance of ERM isn’t much worst than that of the optimal parameter.

6 Lower bracketing covering number

If Θ is infinite, then we can use the idea of covering number. There are different definitions. Let G = {gθ : θ ∈ Θ}
be the function class of the empirical process. GN = {g1(z), . . . , gN (z)} is a ε-lower bracketing cover of G if for all
θ ∈ Θ, there exists j = j(θ) such that

sup
z

[gj(z)− gθ(z)] ≤ 0 Egj(z) ≥ Egθ(z)− ε.

The smallest cardinality NLB(G, ε) of such GN is called ε-lower bracketing covering number. Similarly one can
define upper bracketing covering number. The logarithm of covering number is called entropy. We shall mention that
the functions gj(z) may not necessarily be a function gθ(z) for θ ∈ Θ.

Let G(ε/2) be an ε/2 lower bracketing cover of G, then pick j = j(θ)

sup
θ

[−n−1
n∑
i=1

gθ(Zi) + (1− γ)Egθ(Z) + γEgθ∗(Z)]

= sup
θ

[−n−1[

n∑
i=1

gθ(Zi)−
n∑
i=1

gj(Zi)]

− n−1
n∑
i=1

gj(Zi) + (1− γ)Egj(Z) + γEgθ∗(Z) + (1− γ)[−Egj(Z) + Egθ(Z)]]|j=j(θ)

≤ sup
j∈G(ε/2)

[−n−1
n∑
i=1

gj(Zi) + (1− γ)Egj(Z) + γEgθ∗(Z) + (1− γ)ε/2].

Thus,

P (sup
θ

[−n−1
n∑
i=1

gθ(Zi) + (1− γ)Egθ(Z) + γEgθ∗(Z)] ≥ ε)

≤P ( sup
j∈G(ε/2)

[−n−1
n∑
i=1

gj(Zi) + (1− γ)Egj(Z) + γEgθ∗(Z) + (1− γ)ε/2] ≥ ε)

≤
∑

j∈G(ε/2)

P (−n−1
n∑
i=1

gj(Zi) + Egj(Z) ≥ γ(Egj(Z)− Egθ∗(Z)) + 0.5(1 + γ)ε)

≤|G(ε/2)| sup
j∈G(ε/2)

P (−n−1
n∑
i=1

gj(Zi) + Egj(Z) ≥ γ(Egj(Z)− Egθ∗(Z)) + 0.5(1 + γ)ε).

The summation bound with γ > 0 is a form of an idea in empirical referred to as peeling, and some times also called
shell bounds. We will present a simple example below to illustrate the basic concepts.
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7 A Simple Example

This example is to get you familiar with the intuitions and notations. We will consider more complex examples in
future lectures, but the basic idea resembles this example.

Consider one dimensional classification problem, with x ∈ [−1, 1] and y ∈ {±1}. Assume that conditioned on x, the
class label is given by y = ε(2I(x ≥ θ∗)−1) for some unknown θ∗, with independent random noise ε ∈ {−1, 1}, and
p = P (ε = 1) > 0.5. This means that the optimal Bayes classifier is f∗(x) = 1 when x ≥ θ and f∗(x) = −1 when
x < θ, and the Bayes error is 1− p.

Since we don’t know the true threshold θ∗, we can consider a family of classifiers fθ(x) = 2I(x ≥ θ) − 1, with θ to
be learned from training data. Given sample Z = (X,Y ), the classifier error function for this classifier is

gθ(Z) = I(fθ(X) 6= Y ).

Given training data Zn1 = {(X1, Y1), . . . , (Xn, Yn)}, we can learn a threshold θ̂ using empirical risk minimization
that finds θ by minimizing the training error:

θ̂ = arg min
θ

n∑
i=1

gθ(Zi).

We want to know the generalization performance of θ̂ compared to the Bayes error. That is, to give an upper bound of

Egθ(Z)− (1− p).

We will examine the following few issues in order to understand what is going on:

• 1/
√
n convergence (using Chernoff bound) versus 1/n convergence (using refined Chernoff bound or Bennet).

• The role of peeling.

7.1 Bracketing cover of the function class

Given ε, and let θj = −1 + jε for j = 1, . . . , d2/εe. Let

gj(z) =

{
0 if x ∈ [θj − ε, θj ]
gθj (z) otherwise,

where z = (x, y).

It follows that for any θ ∈ [−1, 1], if we let θj be the smallest j such that θj ≥ θ, then we have gj(z) = 0 ≤ gθ(z)
when x ∈ [θ, θj ], and gj(z) = gθ(z) when x /∈ [θ, θj ], where z = (x, y). Moreover,

Egj(z)− Egθ(z) = Ex∈[θ,θj ] − gθ(z) ≥ −ε.

Note that since only the analysis depends on covering number, generally we can deisgn a covering number that depends
on the truth θ∗, and may cover the space non-uniformly. This is not considered here.
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7.2 Using Standard Chernoff bound without peeling

At θ∗, we have from Chernoff bound:

P (n−1
n∑
i=1

gθ∗(Zi)− Egθ∗(Z) ≥ ε) ≤ exp(−2nε2).

Alternatively, we say that with probability 1− δ1:

n∑
i=1

gθ∗(Zi)− Egθ∗(Z) < ε1 =
√

ln(1/δ1)/2n.

Now we want to evaluate using lower bracking cover G(ε/2) as:

P (sup
θ

[−n−1
n∑
i=1

gθ(Zi) + Egθ(Z)] ≥ ε)

≤|G(ε/2)| sup
j∈G(ε/2)

P (−n−1
n∑
i=1

gj(Zi) + Egj(Z) ≥ 0.5ε)

≤d4/εee−nε
2/2.

We used |G(ε/2)| ≤ d4/εe. Alternatively, we say that with probability 1− δ2 (and note that ε2 ≥
√

2/n):

sup
θ

[−n−1
n∑
i=1

gθ(Zi) + Egθ(Z)] < ε2 =
√

2(lnd4/ε2e − ln δ2)/n. ≤
√

2(lnd4
√
n/2e − ln δ2)/n.

Let δ = 2δ1 = 2δ2, we have with probability at least 1− δ:

Egθ̂(Z)− (1− p) <
√

ln(2/δ)/2n+

√
2(lnd4

√
n/2e+ ln(2/δ))/n <

√
2 lnd4

√
n/2e/n+ 3

√
ln(2/δ)/2n.
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