Symmetrization and Rademacher Averages

Instructor: Sham Kakade

1 Rademacher Averages

Recall that we are interested in bounding the difference between empirical and true expectations uniformly over some function class \mathcal{G} . In the context of classification or regression, we are typically interested in a class \mathcal{G} that is the *loss class* associated with some function class \mathcal{F} . That is, given a *bounded* loss function $\ell: \mathcal{D} \times \mathcal{Y} \to [0,1]$, we consider the class

$$\ell_{\mathcal{F}} := \{(x,y) \mapsto \ell(f(x),y) \mid f \in \mathcal{F}\} .$$

Rademacher averages give us a powerful tool to obtain uniform convergence results. We begin by examining the quantity

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\mathbb{E}\left[g(Z)\right]-\frac{1}{m}\sum_{i=1}^{m}g(Z_{i})\right)\right]\,,$$

where $Z, \{Z_i\}_{i=1}^m$ are i.i.d. random variables taking values in some space \mathcal{Z} and $\mathcal{G} \subseteq [a,b]^{\mathcal{Z}}$ is a set of bounded functions. We will later show that the random quantity we are interested in, namely

$$\sup_{g \in \mathcal{G}} \left(\mathbb{E}\left[g(Z) \right] - \frac{1}{m} \sum_{i=1}^{m} g(Z_i) \right) ,$$

will be close to the above expectation with high probability.

Let $\epsilon_1, \ldots, \epsilon_m$ be i.i.d. $\{\pm\}$ -valued random variables with $\mathbb{P}(\epsilon_i = +1) = \mathbb{P}(\epsilon_i = -1) = 1/2$. These are also independent of the sample Z_1, \ldots, Z_m . Define the *empirical Rademacher average* of \mathcal{G} as

$$\hat{\mathfrak{R}}_m(\mathcal{G}) := \mathbb{E}\left[\sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^m \epsilon_i g(Z_i) \middle| Z_1^m \right].$$

The *Rademacher average* of \mathcal{G} is defined as

$$\mathfrak{R}_m(\mathcal{G}) := \mathbb{E}\left[\hat{\mathfrak{R}}_m(\mathcal{G})\right]$$
.

Theorem 1.1. We have,

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\mathbb{E}\left[g(Z)\right]-\frac{1}{m}\sum_{i=1}^{m}g(Z_{i})\right)\right]\leq 2\mathfrak{R}_{m}(\mathcal{G}).$$

Proof. Introduce the ghost sample Z'_1, \ldots, Z'_m . By that we mean that Z'_i 's are independent of each other and of Z_i 's

and have the same distribution as the latter. Then we have,

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\mathbb{E}\left[g(Z)\right] - \frac{1}{m}\sum_{i=1}^{m}g(Z_{i})\right)\right]$$

$$= \mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\frac{1}{m}\sum_{i=1}^{m}(\mathbb{E}\left[g(Z)\right] - g(Z_{i}))\right)\right]$$

$$= \mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\frac{1}{m}\sum_{i=1}^{m}\mathbb{E}\left[g(Z'_{i}) - g(Z_{i})|Z_{1}^{m}\right]\right)\right]$$

$$\leq \mathbb{E}\left[\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\frac{1}{m}\sum_{i=1}^{m}(g(Z'_{i}) - g(Z_{i}))\right)|Z_{1}^{m}\right]\right]$$

$$= \mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\frac{1}{m}\sum_{i=1}^{m}(g(Z'_{i}) - g(Z_{i}))\right)\right]$$

$$= \mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\frac{1}{m}\sum_{i=1}^{m}\epsilon_{i}(g(Z'_{i}) - g(Z_{i}))\right)\right]$$

$$\leq \mathbb{E}\left[\sup_{g\in\mathcal{G}}\frac{1}{m}\sum_{i=1}^{m}\epsilon_{i}g(Z'_{i})\right] + \mathbb{E}\left[\sup_{g\in\mathcal{G}}\frac{1}{m}\sum_{i=1}^{m}\epsilon_{i}g(Z_{i})\right]$$

$$= 2\Re_{m}(\mathcal{G}).$$

Since $\mathfrak{R}_m(-\mathcal{G}) = \mathfrak{R}_m(\mathcal{G})$, we have the following corollary.

Corollary 1.2. We have,

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\frac{1}{m}\sum_{i=1}^{m}g(Z_i)-\mathbb{E}\left[g(Z)\right]\right)\right]\leq 2\mathfrak{R}_m(\mathcal{G}).$$

Since $g(X_i) \in [a, b]$,

$$\sup_{g \in \mathcal{G}} \left(\mathbb{E}\left[g(Z)\right] - \frac{1}{m} \sum_{i=1}^{m} g(Z_i) \right)$$

does not change by more than (b-a)/m if some Z_i is changed to Z'_i . Applying the bounded differences inequality, we get the following corollary.

Corollary 1.3. With probability at least $1 - \delta$,

$$\sup_{g \in \mathcal{G}} \left(\mathbb{E}\left[g(Z) \right] - \frac{1}{m} \sum_{i=1}^{m} g(Z_i) \right) \le 2\mathfrak{R}_m(\mathcal{G}) + (b - a) \sqrt{\frac{\ln(1/\delta)}{2m}}$$

Recall that we denote the empirical ℓ -loss minimizer by \hat{f}_{ℓ}^* . We refer to $L_{\ell}(\hat{f}_{\ell}^*) - \min_{f \in \mathcal{F}} L_{\ell}(f)$ as the estimation error. The next theorem bounds the estimation error using Rademacher averages.

2 Expected Regret

Now let us examine the expected regret of the empirical risk minimizer (e.g. analogous to the statistical risk). Let

$$\hat{g} = \arg\min_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} g(Z_i)$$

where τ is the training set and

$$g^* = \arg\min_{g \in \mathcal{G}} \mathbb{E}\left[g(Z)\right]$$

which is true minimizer.

Lemma 2.1. *The expected regret is:*

$$\mathbb{E}\left[\mathbb{E}\left[\hat{g}(Z)\right] - \mathbb{E}\left[g^*(Z)\right]\right] \leq 2\mathfrak{R}_m(\mathcal{G}) + \mathbb{E}\left[\frac{1}{m}\sum_{i=1}^m g^*(Z_i) - \mathbb{E}\left[g^*(Z)\right]\right]$$

$$\leq 4\mathfrak{R}_m(\mathcal{G})$$

where the expectation is with respect \hat{g} (due to randomness in the training set).

Proof. Let

 \hat{g}

The expected regret is:

$$\mathbb{E}\left[\mathbb{E}\left[\hat{g}(Z)\right] - \mathbb{E}\left[g^*(Z)\right]\right] \leq \mathbb{E}\left[\mathbb{E}\left[\hat{g}(Z)\right] - \frac{1}{m}\sum_{i=1}^{m}\hat{g}(Z_i) + \frac{1}{m}\sum_{i=1}^{m}\hat{g}(Z_i) - \mathbb{E}\left[g^*(Z)\right]\right]$$

$$\leq \mathbb{E}\left[\mathbb{E}\left[\hat{g}(Z)\right] - \frac{1}{m}\sum_{i=1}^{m}\hat{g}(Z_i) + \frac{1}{m}\sum_{i=1}^{m}g^*(Z_i) - \mathbb{E}\left[g^*(Z)\right]\right]$$

$$\leq \mathbb{E}\left[\sup g \in \mathcal{G}\left(\mathbb{E}\left[\hat{g}(Z)\right] - \frac{1}{m}\sum_{i=1}^{m}\hat{g}(Z_i)\right)\right] + \mathbb{E}\left[\frac{1}{m}\sum_{i=1}^{m}g^*(Z_i) - \mathbb{E}\left[g^*(Z)\right]\right]$$

$$\leq 2\mathfrak{R}_m(\mathcal{G}) + \mathbb{E}\left[\frac{1}{m}\sum_{i=1}^{m}g^*(Z_i) - \mathbb{E}\left[g^*(Z)\right]\right]$$

The final claim is straightforward.

3 Growth function

Consider the case $\mathcal{Y} = \{\pm 1\}$ (classification). Let ℓ be the 0-1 loss function and \mathcal{F} be a class of ± 1 -valued functions. We can relate the Rademacher average of $\ell_{\mathcal{F}}$ to that of \mathcal{F} as follows.

Lemma 3.1. Suppose $\mathcal{F} \subseteq \{\pm 1\}^{\mathcal{X}}$ and let $\ell(y',y) = \mathbf{1}[y' \neq y]$ be the 0-1 loss function. Then we have,

$$\mathfrak{R}_m(\ell_{\mathcal{F}}) = \frac{1}{2}\mathfrak{R}_m(\mathcal{F}) .$$

Proof. Note that we can write $\ell(y', y)$ as (1 - yy')/2. Then we have,

$$\mathfrak{R}_{m}(\ell_{\mathcal{F}}) = \mathbb{E}\left[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} \epsilon_{i} \frac{1 - Y_{i} f(X_{i})}{2} \middle| X_{1}^{m}, Y_{1}^{m}\right] \\
= \mathbb{E}\left[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} \epsilon_{i} \frac{Y_{i} f(X_{i})}{2} \middle| X_{1}^{m}, Y_{1}^{m}\right] \\
= \frac{1}{2} \mathbb{E}\left[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} (-\epsilon_{i} Y_{i}) f(X_{i}) \middle| X_{1}^{m}, Y_{1}^{m}\right] \\
= \frac{1}{2} \mathbb{E}\left[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} \epsilon_{i} f(X_{i}) \middle| X_{1}^{m}, Y_{1}^{m}\right] \\
= \frac{1}{2} \mathfrak{R}_{m}(\mathcal{F}). \tag{2}$$

Equation (1) follows because $\mathbb{E}\left[\epsilon_i|X_1^m,Y_1^m\right]=0$. Equation (2) follows because $-\epsilon_iY_i$'s jointly have the same distribution as ϵ_i 's.

Note that the Rademacher average of the class \mathcal{F} can also be written as

$$\mathfrak{R}_m(\mathcal{F}) = \mathbb{E}\left[\sup_{a \in \mathcal{F}_{|X_1^m}} \frac{1}{m} \sum_{i=1}^m \epsilon_i a_i\right],$$

where $\mathcal{F}_{|X_1^m}$ is the function class \mathcal{F} restricted to the set X_1,\ldots,X_m . That is,

$$\mathcal{F}_{|X_1^m} := \{((f(X_1), \dots, f(X_m)) | f \in \mathcal{F}\} .$$

Note that $\mathcal{F}_{|X_1^m}$ is finite and

$$|\mathcal{F}_{|X_1^m}| \le \min\{|\mathcal{F}|, 2^m\}.$$

Thus we can define the growth function as

$$\Pi_{\mathcal{F}}(m) := \max_{x_1^m \in \mathcal{X}^m} |\mathcal{F}_{|x_1^m|}|.$$

The following lemma due to Massart allows us to bound the Rademacher average in terms of the growth function.

Lemma 3.2. (Finite Class Lemma) Let A be some finite subset of \mathbb{R}^m and $\epsilon_1, \ldots, \epsilon_m$ be independent Rademacher random variables. Let $r = \sup_{a \in A} \|a\|$. Then, we have,

$$\mathbb{E}\left[\sup_{a\in\mathcal{A}}\frac{1}{m}\sum_{i=1}^{m}\epsilon_{i}a_{i}\right]\leq \frac{r\sqrt{2\ln|\mathcal{A}|}}{m}.$$

Proof. Let

$$\mu = \mathbb{E}\left[\sup_{a \in \mathcal{A}} \sum_{i=1}^{m} \epsilon_i a_i\right].$$

We have, for any $\lambda > 0$,

$$e^{\lambda\mu} \leq \mathbb{E}\left[\exp\left(\lambda \sup_{a \in \mathcal{A}} \sum_{i=1}^{m} \epsilon_{i} a_{i}\right)\right]$$

$$= \mathbb{E}\left[\sup_{a \in \mathcal{A}} \exp\left(\lambda \sum_{i=1}^{m} \epsilon_{i} a_{i}\right)\right]$$

$$\leq \mathbb{E}\left[\sum_{a \in \mathcal{A}} \exp\left(\lambda \sum_{i=1}^{m} \epsilon_{i} a_{i}\right)\right]$$

$$= \sum_{a \in \mathcal{A}} \mathbb{E}\left[\exp\left(\lambda \sum_{i=1}^{m} \epsilon_{i} a_{i}\right)\right]$$

$$= \sum_{a \in \mathcal{A}} \prod_{i=1}^{m} \mathbb{E}\left[\exp\left(\lambda \epsilon_{i} a_{i}\right)\right]$$

$$\leq \sum_{a \in \mathcal{A}} \prod_{i=1}^{m} e^{\lambda^{2} a_{i}^{2}/2}$$

$$= \sum_{a \in \mathcal{A}} e^{\lambda^{2} \|a\|^{2}/2}$$

$$\leq |\mathcal{A}|e^{\lambda^{2} r^{2}/2}$$

Jensen's inequality

: Hoeffding's lemma

Taking logs and dividing by λ , we get that, for any $\lambda > 0$,

$$\mu \le \frac{\ln |\mathcal{A}|}{\lambda} + \frac{\lambda r^2}{2}$$
.

Setting $\lambda = \sqrt{2 \ln |\mathcal{A}|/r^2}$ gives,

$$\mu \le r\sqrt{2\ln|\mathcal{A}|}$$
,

which proves the lemma.