Bounded Differences, Rademacher Averages, and ℓ_1 Regularization

Instructor: Sham Kakade

1 Bounded Differences Inequality

Suppose Z_1, \ldots, Z_m are independent random variables taking values in some space \mathcal{Z} and $f: \mathcal{Z}^m \to \mathbb{R}$ is a function that satisfies, for all i,

$$\sup_{z_1,\ldots,z_m,z_i'} |f(z_1,\ldots,z_{i-1},z_i,z_{i+1},\ldots,z_m) - f(z_1,\ldots,z_{i-1},z_i',z_{i+1},\ldots,z_m)| \le c_i$$

for some constants c_1, \ldots, c_m . Then we have,

$$\mathbb{P}\left(f(Z_1^m) - \mathbb{E}\left[f(Z_1^m)\right] \ge t\right) \le \exp\left(\frac{-2t^2}{\sum_{i=1}^m c_i^2}\right) .$$

2 Rademacher Averages

Recall that we are interested in bounding the difference between empirical and true expectations uniformly over some function class \mathcal{G} . In the context of classification or regression, we are typically interested in a class \mathcal{G} that is the *loss class* associated with some function class \mathcal{F} . That is, given a *bounded* loss function $\phi: \mathcal{D} \times \mathcal{Y} \to [0,1]$, we consider the class

$$\phi_{\mathcal{F}} := \{(x, y) \mapsto \phi(f(x), y) \mid f \in \mathcal{F}\}$$
.

Rademacher averages give us a powerful tool to obtain uniform convergence results. We begin by examining the quantity

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\mathbb{E}\left[g(Z)\right]-\frac{1}{m}\sum_{i=1}^{m}g(Z_{i})\right)\right],$$

where $Z, \{Z_i\}_{i=1}^m$ are i.i.d. random variables taking values in some space \mathcal{Z} and $\mathcal{G} \subseteq [a,b]^{\mathcal{Z}}$ is a set of bounded functions. By the bounded differences inequality, the random quantity we are interested in, namely

$$\sup_{g \in \mathcal{G}} \left(\mathbb{E}\left[g(Z) \right] - \frac{1}{m} \sum_{i=1}^{m} g(Z_i) \right) ,$$

will be close to the above expectation with high probability.

Let $\epsilon_1, \ldots, \epsilon_m$ be i.i.d. $\{\pm\}$ -valued random variables with $\mathbb{P}(\epsilon_i = +1) = \mathbb{P}(\epsilon_i = -1) = 1/2$. These are also independent of the sample Z_1, \ldots, Z_m . Define the *empirical Rademacher average* of \mathcal{G} as

$$\hat{\mathfrak{R}}_m(\mathcal{G}) := \mathbb{E}\left[\sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^m \epsilon_i g(Z_i) \middle| Z_1^m \right] .$$

The *Rademacher average* of \mathcal{G} is defined as

$$\mathfrak{R}_m(\mathcal{G}) := \mathbb{E}\left[\hat{\mathfrak{R}}_m(\mathcal{G})\right]$$
.

Theorem 2.1. We have,

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\mathbb{E}\left[g(Z)\right]-\frac{1}{m}\sum_{i=1}^{m}g(Z_{i})\right)\right]\leq 2\Re_{m}(\mathcal{G}).$$

Proof. Introduce the *ghost sample* Z'_1, \ldots, Z'_m . By that we mean that Z'_i 's are independent of each other and of Z_i 's and have the same distribution as the latter. Then we have,

$$\begin{split} & \mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\mathbb{E}\left[g(Z)\right] - \frac{1}{m}\sum_{i=1}^{m}g(Z_{i})\right)\right] \\ &= \mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\frac{1}{m}\sum_{i=1}^{m}(\mathbb{E}\left[g(Z)\right] - g(Z_{i}))\right)\right] \\ &= \mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\frac{1}{m}\sum_{i=1}^{m}\mathbb{E}\left[g(Z_{i}') - g(Z_{i})|Z_{1}^{m}\right]\right)\right] \\ &\leq \mathbb{E}\left[\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\frac{1}{m}\sum_{i=1}^{m}(g(Z_{i}') - g(Z_{i}))\right)\left|Z_{1}^{m}\right|\right]\right] \\ &= \mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\frac{1}{m}\sum_{i=1}^{m}(g(Z_{i}') - g(Z_{i}))\right)\right] \\ &= \mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\frac{1}{m}\sum_{i=1}^{m}\epsilon_{i}(g(Z_{i}') - g(Z_{i}))\right)\right] \\ &\leq \mathbb{E}\left[\sup_{g\in\mathcal{G}}\frac{1}{m}\sum_{i=1}^{m}\epsilon_{i}g(Z_{i}')\right] + \mathbb{E}\left[\sup_{g\in\mathcal{G}}\frac{1}{m}\sum_{i=1}^{m}\epsilon_{i}g(Z_{i})\right] \\ &= 2\Re_{m}(\mathcal{G}) \; . \end{split}$$

Since $\mathfrak{R}_m(-\mathcal{G}) = \mathfrak{R}_m(\mathcal{G})$, we have the following corollary.

Corollary 2.2. We have,

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\frac{1}{m}\sum_{i=1}^{m}g(Z_i)-\mathbb{E}\left[g(Z)\right]\right)\right]\leq 2\Re_m(\mathcal{G}).$$

Since $g(X_i) \in [a, b]$,

$$\sup_{g \in \mathcal{G}} \left(\mathbb{E}\left[g(Z)\right] - \frac{1}{m} \sum_{i=1}^{m} g(Z_i) \right)$$

does not change by more than (b-a)/m if some Z_i is changed to Z'_i . Applying the bounded differences inequality, we get the following corollary.

Corollary 2.3. With probability at least $1 - \delta$,

$$\sup_{g \in \mathcal{G}} \left(\mathbb{E}\left[g(Z) \right] - \frac{1}{m} \sum_{i=1}^{m} g(Z_i) \right) \le 2\Re_m(\mathcal{G}) + (b - a) \sqrt{\frac{\ln(1/\delta)}{2m}}$$

Recall that we denote the empirical ϕ -risk minimizer by \hat{f}_{ϕ}^* . We refer to $L_{\phi}(\hat{f}_{\phi}^*) - \min_{f \in \mathcal{F}} L_{\phi}(f)$ as the estimation error. The next theorem bounds the estimation error using Rademacher averages.

Theorem 2.4. Let $\phi_{\mathcal{F}}$ denote the loss class associated with \mathcal{F} . Then, we have, with probability at least $1-2\delta$,

$$L_{\phi}(\hat{f}_{\phi}^*) - \min_{f \in \mathcal{F}} L_{\phi}(f) \le 2\mathfrak{R}_m(\phi_{\mathcal{F}}) + 2\sqrt{\frac{\ln(1/\delta)}{2m}}.$$

Proof. Denote the function in \mathcal{F} with minimum risk by $f_{\mathcal{F}}^*$. Since the loss function takes values in the interval [0,1], applying the previous corollary to the class $\phi_{\mathcal{F}}$, we get, with probability at least $1-2\delta$,

$$L_{\phi}(\hat{f}_{\phi}^*) - \hat{L}_{\phi}(\hat{f}_{\phi}^*) \le 2\mathfrak{R}_m(\phi_{\mathcal{F}}) + \sqrt{\frac{\ln(1/\delta)}{2m}}.$$

Also, by the bounded differences inequality, we have with probability at least $1 - \delta$,

$$\hat{L}_{\phi}(f_{\mathcal{F}}^*) - L_{\phi}(f_{\mathcal{F}}^*) \le \sqrt{\frac{\ln(1/\delta)}{2m}} .$$

Thus we have, with probability at least $1 - 2\delta$,

$$L_{\phi}(\hat{f}_{\phi}^{*}) - L_{\phi}(f_{\mathcal{F}}^{*}) \leq \hat{L}_{\phi}(\hat{f}_{\phi}^{*}) - L_{\phi}(f_{\mathcal{F}}^{*}) + 2\mathfrak{R}_{m}(\phi_{\mathcal{F}}) + \sqrt{\frac{\ln(1/\delta)}{2m}}$$
$$\leq \hat{L}_{\phi}(\hat{f}_{\phi}^{*}) - \hat{L}_{\phi}(f_{\mathcal{F}}^{*}) + 2\mathfrak{R}_{m}(\phi_{\mathcal{F}}) + 2\sqrt{\frac{\ln(1/\delta)}{2m}}$$
$$\leq 0 + 2\mathfrak{R}_{m}(\phi_{\mathcal{F}}) + 2\sqrt{\frac{\ln(1/\delta)}{2m}}$$

3 Expected Regret and Generalization

Lemma 3.1. Let \mathcal{F} be the class of linear predictors, with the L_1 -norm of the weights bounded by W_1 . Also assume that with probability one that $||x||_{\infty} \leq X_{\infty}$. Then

$$\Re(\mathcal{F}) \le X_{\infty} W_1 \sqrt{\frac{2 \log d}{m}}$$

where d is the dimensionality of x.

Proof. Let $\mathcal{F}_{x_1,x_2,...,x_m}$ be the class:

$$\{(w \cdot x_1, w \cdot x_2, \dots w \cdot x_m) : ||w||_1 \le W_1\}$$

Using the definition of the dual norms, we now bound this empirical Rademacher complexity:

$$\Re(\mathcal{F}) = \frac{1}{m} \mathbb{E} \left[\sup_{w:||w||_1 \le W_1} \sum_{i=1}^m \epsilon_i w \cdot x_i \right]$$

$$= \frac{1}{m} \mathbb{E} \left[\sup_{w:||w||_1 \le W_1} w \cdot \sum_{i=1}^m \epsilon_i x_i \right]$$

$$= \frac{W_1}{m} \mathbb{E} \left[||\sum_{i=1}^m \epsilon_i x_i||_{\infty} \right]$$

$$= \frac{W_1}{m} \mathbb{E} \left[\sup_j \sum_{i=1}^m \epsilon_i [x_i]_j \right]$$

$$\le \frac{W_1 \sqrt{2 \log d}}{m} \sup_j \sqrt{\sum_{i=1}^m [x_i]_j^2}$$

$$\le X_{\infty} W_1 \sqrt{\frac{2 \log d}{m}}$$

where we have used Massart's finite lemma.

3.1 Generalization

Corollary 3.2. *Under the assumptions above, for the* L2 *case, we have:*

$$\mathcal{L}(\hat{w}_2) - \arg\min_{w:||w||_2 \le W_2} \mathcal{L}(w) \le 2L_{\phi} \frac{X_2 W_2}{\sqrt{m}} + 2\sqrt{\frac{\log 2/\delta}{2m}}$$

and for the L1 case, we have:

$$\mathcal{L}(\hat{w}_1) - \arg\min_{w:||w||_1 \le W_1} \mathcal{L}(w) \le 2L_{\phi} X_{\infty} W_1 \sqrt{\frac{2\log d}{m}} + 2\sqrt{\frac{\log 2/\delta}{2m}}$$

The proof just follow from the previous lemmas, along with our Rademacher bound for loss classes.