
Stat 928: Statistical Learning Theory Lecture: 15

Rademacher Averages, Linear Prediction, and Convex Duality

Instructor: Sham Kakade

1 Convex duality

We define the dual (conjugate) of f as
f∗(v) = sup

u
[u>v − f(u)].

Note that f∗(v) is convex (even if f(u) isn’t because it is the sup of convex functions).

By definition, we have the following inequality:

u>v ≤ f(u) + f∗(v),

which decouples u and v.

We also have f(u) = (f∗)∗(u). To see this, we use the following (not exactly rigorous derivation): given any u, let
v0 = ∇f(u), then

u>v0 = f(u) + f∗(v0)

because u>v0 − f(u) (which is concave) has subgradient zero at u, and thus achieves maximum. Now, we know that

(f∗)∗(u) ≥ u>v0 − f∗(v0)

and thus (f∗)∗(u) ≥ f(u).

In addition, we know that there exists v′0 such that

(f∗)∗(u) + f∗(v′0)− u>v′0 = 0.

This means that f(u) ≥ u>v′0− f∗(v′0) = (f∗)∗(u). Therefore we have f(u) = (f∗)∗(u). Note that if (u, v) is a pair
such that the equality holds u>v = f(u) + f∗(v), then we have the relationship u = ∇f∗(v) and v = ∇f(u).

Some examples of convex duality (verification leaves as exercise):

f(u) = p−1‖u‖pp; f∗(v) = q−1‖v‖qq (p−1 + q−1 = 1).

f(u) = 0.5‖u‖2p; f∗(v) = 0.5‖v‖2q (p−1 + q−1 = 1).

If
∑
j µj = 1 and µj ≥ 0, then

f(u) = ln
∑
j

µje
uj ; f∗(v) =

∑
j

vj ln(vj/µj) subject to
∑
j

vj = 1, vj ≥ 0.

For any norm ‖u‖P , one can also define its dual norm ‖v‖D as

‖v‖D = sup
‖u‖≤1

u>v.
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This means that we have the decoupling inequality:

u>v ≤ ‖u‖P ‖v‖D.

Examples: for vectors, ‖u‖p and ‖v‖q are dual norms when 1/p + 1/q = 1. The same holds for matrix Schatten
norms.

2 Rademacher Complexity of Regularized Linear Function Class

Consider linear functions of the form:
F = {w>x : g(w) ≤ A},

and we are interested ine its Rademacher Complexity:

Rn(F,X
n
1 ) = Eσ sup

‖w‖p≤A
n−1

n∑
i=1

σiw
>Xi.

Then using duality, we have

n−1
n∑
i=1

σiw
>Xi ≤ inf

λ
[λ−1g(w) + λ−1g∗(λn−1

n∑
i=1

σiXi)].

If g∗(0) = 0 and is smooth with respect to a norm ‖ · ‖:

g∗(u) ≤ g∗(v) +∇g∗(v)>(u− v) + L‖u− v‖2,

for some L > 0, then one can show using induction that

Rn(F,X
n
1 ) ≤ inf

λ
[λ−1g(w) + λ−1Eσg

∗(λn−1
n∑
i=1

σiXi)]

≤ inf
λ

[
λ−1g(w) + λ−10.5Eσn−1

1
[g∗(λn−1(−Xn +

n−1∑
i=1

σiXi)) + g∗(λn−1(Xn +

n−1∑
i=1

σiXi))]

]

≤ inf
λ

[
λ−1g(w) + λn−2‖Xn‖2 + λ−1Eσn−1

1
g∗(λn−1(

n−1∑
i=1

σiXi))

]
· · ·

≤2

√√√√ALn−2
n∑
i=1

‖Xi‖2.

Then

Rn(F,X
n
1 ) ≤ 2

√
ABL/n, B =

1

n

n∑
i=1

‖Xi‖2.

3 Some Examples

3.1 Vector L2 regularization

We have g(w) = 0.5‖w‖22, then g∗(u) = 0.5‖u‖22, and is smooth with respect to ‖ · ‖2 with L = 0.5. It follows that

Rn(F,X
n
1 ) ≤ ab/

√
n; F = {w : ‖w‖2 ≤ a}; b = sup

i
‖Xi‖2.
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3.2 Vector Lp regularization

We have g(w) = 0.5‖w‖2p with p ∈ (1, 2], then g∗(u) = 0.5‖u‖2q , where 1/p+ 1/q = 1. It can be shown with Taylor
expansion that g∗(·) is smooth with respect to ‖ · ‖q with L = 0.5(q − 1). It follows that

Rn(F,X
n
1 ) ≤ ab

√
(q − 1)/n; F = {w : ‖w‖p ≤ a}; b = sup

i
‖Xi‖q.

Note that this formula diverges when p = 1 (corresponding to q =∞). We need another formulation to deal with the
case p = 1 (or p is close to 1).

Note that w can be infinite dimensional.

3.3 Vector entropy regularization

Here we assume that constraint that
∑
j wj = A1 and wj ≥ 0 (note that we can transform x → [x,−x] to simulate

the effect of wj ≤ 0). In this case, we consider regularization g(w) =
∑
j wj ln(wj/µj), where {µj > 0} is a set of

postive prior such that
∑
j µj = A1. In this case, we know that g∗(u) = A1 ln(

∑
j(µj/A1) exp(uj)), and g∗(u) is

smooth with respect to ‖ · ‖∞ with L = 0.5A1. It follows that

Rn(F,X
n
1 ) ≤ B

√
2A1A2/n; F = {w :

∑
j

wj ln(wj/µj) ≤ A2;wj ≥ 0;
∑
j

wj = A1}; B = sup
i
‖Xi‖∞.

Herew can be infinite dimensional. In finite dimension, wherew, x ∈ Rp, we may take µj = A1/p, and the maximum
value

∑
j wj ln(wj/µj) ≤ A1 ln(p). Therefore we may take A2 = A1 ln(p) and obtain the following bound for L1

regularization (in finite dimension):

Rn(F,X
n
1 ) ≤ A1b

√
2 ln(p)/n; F = {w : wj ≥ 0;

∑
j

wj = A1}; b = sup
i
‖Xi‖∞.

3.4 Matrix Lp Schatten norm regularization

Let w be a matrix, and g(w) = 0.5‖w‖2p with p ∈ (1, 2], where ‖ · ‖p denotes the matrix Schatten norm here. Then the
results essentially follow that of the vector norm, with g∗(u) = 0.5‖u‖2q , where 1/p+ 1/q = 1. It can be shown with
Taylor expansion that g∗(·) is smooth with respect to ‖ · ‖q with L = 0.5(q − 1). It follows that

Rn(F,X
n
1 ) ≤ ab

√
(q − 1)/n; F = {w : ‖w‖p ≤ a}; b = sup

i
‖Xi‖q.

Similar results parallel to vector entropy regularization can be obtained for matrix regularization.
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