
Stat 928: Statistical Learning Theory Lecture: 16

Uniform and Empirical Covering Numbers

Instructor: Sham Kakade

1 Warmup

Assume that for every α > 0 that we have a (finite) set F̂α such that for all f ∈ F there exists an f̂ ∈ F̂α such that
x ∈ X , y ∈ Y :

|φ(f̂(x), y)− φ(f(x), y)| ≤ α .

Such an F̂α is a α-cover of F . Clearly, this implies that:

|L(f̂(x))− L(f(x))| ≤ α .

Hence, we can view F̂α as implicitly providing a cover for the loss class.

Intuitively, with respect to obtaining a uniform convergence rate, we could work directly with F̂α. More precisely,

Theorem 1.1. Assume that for all f ∈ F our predictions are in [−1, 1]. With probability greater than 1− δ

sup
f∈F
|L̂(f)− L(f)| ≤ inf

α
2

√
log |F̂α|+ log 1

δ

2n
+ 2α

Proof. Fix α. Using the union bound, we have:

sup
f̂∈F̂α

|L̂(f̂)− L(f̂)| ≤ 2

√
log |F̂α|+ log 1

δ

2n

Let c(f) be the function F̂α which covers f . Following from the definition of c(f) and F̂α, we have that for all
f ∈ F ,:

|L(f)− L(c(f))| ≤ α
|L̂(f)− L̂(c(f))| ≤ α

It follows that:

sup
f∈F
|L̂(f)− L(f)| = sup

f∈F
|L̂(f)− L̂(c(f))− (L(f)− L(c(f))) + L̂(c(f))− L(c(f))|

≤ 2α+ sup
f∈F
|L̂(c(f))− L(c(f))|

≤ 2α+ sup
f̂∈F̂α

|L̂(f̂)− L(f̂)|

≤ 2α+

√
log |F̂α|+ 2 log 1

δ

2n

The proof is completed by noting that α is arbitrary, so we can take a inf over α.
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2 General covering numbers

Consider function class G = {gθ(Z) : θ ∈ Θ}. Given any metric d(g, g′), an ε cover of G in metric d is a set
Gd(ε) = {g1(Z), . . . , gN (Z)} such that for all gθ ∈ G, there exists j: d(gθ, gj) ≤ ε.

An example is least squares sub-Gaussian analysis, where gθ(ξ) = θ>PXξ, and the covering is with respect to the
Euclidean distance in the parameter space Θ = Sd−1.

We are particularly interested in distances with respect to the true or empirical underlying distribution of Z. Let
D be a distribution over Z, then we can define Lp distance between two functions g(z) and g′(z) as dpD(g, g′) =
[ED|g(z)− g′(z)|p]1/p. We know that dpP (g, g′) increases as p increases (property of Lp distance).

Now Gp(ε) = {g1(Z), . . . , gN (Z)} is an Lp cover of G with respect to D if for all gθ ∈ G, there exists j such that

[EZ∼D|gj(Z)− gθ(Z)|p]1/p ≤ ε.

Moreover, consider an empirical distribution Zn1 = {Z1, . . . , Zn} over Z, then we may define empirical Lp cover of
G as Lp cover of G with respect to the empirical p-norm:

[n−1
n∑
i=1

|g(Zi)− g′(Zi)|p]1/p.

The smallest number of ε-cover, is called ε-covering number, and the log of covering number is called ε-entropy.
Uniform (empirical) Lp entropy is the maximum Lp entropy of G under the worst case empirical distribution. Since
Lp distance increases, therefore Lp entropy increases when p increases. However, the most interesting cases are p ≥ 2,
specially p = 2 and p =∞.

Relation to bracketing cover: L∞ cover is stronger than Bracketing cover. This is because if {gj} is an ε cover of gθ,
then gLj = gj − ε is 2ε lower and gUj is 2ε upper bracketing cover. gLj and gUj is 2ε bracketing cover. The reverse is
not necessarily true. For example, the classification example has finite bracketing cover but does not have finite L∞
cover. Because of the relationship, the analysis of bracketing cover can be used with L∞ cover. However, some times
empirical L∞ cover is useful and one does not necessarily have a bracketing cover counterpart.

3 p-norm Covering Numbers

The problem with the previous notion of a cover is that it uniformly demands a good approximation to each f by an
element in F̂α. Intuitively, it seems more natural to have a cover such that for each f ∈ F there is an element in the
cover which is only on average close f . We now formalize this.

Assume that all hypotheses in our class F make real valued predictions. Let x1:n be a set of n points. A set of vectors
V ⊂ Rn is an α-cover, with respect to the p-norm, of F on x1:n if for all f ∈ F there exists a v ∈ V such that:(

1

n

n∑
i=1

|vi − f(xi)|p
) 1
p

≤ α

We define the p-norm covering number Np(α,F , x1:n) as the size of the minimal such cover V , i.e.:

Np(α,F , x1:n) = min{|V | : V is an α-cover, under the p-norm, of F on x1:n}

Also define:
Np(α,F , n) = sup

x1:n

Np(α,F , x1:n) .
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In other words, Np(α,F , n) is the worst case covering number over x1:n.

Observe that:
Np(α,F ,∞) ≤ Nq(α,F ,∞)

for p ≤ q. This is consequence of using the (normalized) p-norm in the definition of the covering number.

Note that:
N∞(α,F ,∞) ≤ |F̂α|

which follows directly from the definition of F̂α.

4 Rademacher Bounds

Theorem 4.1. (Discretization) Assume that all f ∈ F make predictions in [−1, 1]. Let R̂n(F) be the empirical
Rademacher number of F on x1:n. We have:

R̂n(F) ≤ inf
α

√
2 logN1(α,F , x1:n)

n
+ α

Proof. Fix α and fix a minimal cover V . Define Bα(v) to be the hypothesis in F that are α-covered by v. Using that
∪v∈VBα(v) = F ,

R̂n(F) = E

[
sup
f∈F

(
1

n

n∑
i=1

εif(xi)

)]

= E

[
sup
v∈V

sup
f∈Bα(v)

(
1

n

n∑
i=1

εif(xi)

)]

= E

[
sup
v∈V

sup
f∈Bα(v)

(
1

n

n∑
i=1

εivi +
1

n

n∑
i=1

εi(f(xi)− vi)

)]

≤ E

[
sup
v∈V

1

n

n∑
i=1

εivi

]
+ E

[
sup
v∈V

sup
f∈Bα(v)

1

n

n∑
i=1

εi(f(xi)− vi)

]
Using Holder’s inequality for the second term,

E

[
sup
v∈V

sup
f∈Bα(v)

1

n

n∑
i=1

εi(f(xi)− vi)

]
≤ E

[
sup
v∈V

sup
f∈Bα(v)

1

n

n∑
i=1

|f(xi)− vi|

]
≤ α

Using Massart’s finite lemma for the first term:

E

[
sup
v∈V

1

n

n∑
i=1

εivi

]
≤

supv∈V ||v||2
√

2 log |V |
n

≤
√

2 log |V |
n

=

√
2 logN1(α,F , x1:n)

n

The proof is completed by combining these last two bounds and noting that α was arbitrary (so we can take an inf over
all α > 0).
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The following is immediate:

Corollary 4.2. Assume that all f ∈ F make predictions in [−1, 1]. We have:

Rn(F) ≤ inf
α

√
2 logN1(α,F , n)

n
+ α
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