Uniform and Empirical Covering Numbers

Instructor: Sham Kakade

1 Warmup

Assume that for every $\alpha > 0$ that we have a (finite) set $\hat{\mathcal{F}}_{\alpha}$ such that for all $f \in \mathcal{F}$ there exists an $\hat{f} \in \hat{\mathcal{F}}_{\alpha}$ such that $x \in \mathcal{X}, y \in \mathcal{Y}$:

$$|\phi(\hat{f}(x), y) - \phi(f(x), y)| \le \alpha$$
.

Such an $\hat{\mathcal{F}}_{\alpha}$ is a α -cover of \mathcal{F} . Clearly, this implies that:

$$|\mathcal{L}(\hat{f}(x)) - \mathcal{L}(f(x))| \le \alpha$$
.

Hence, we can view $\hat{\mathcal{F}}_{\alpha}$ as implicitly providing a cover for the loss class.

Intuitively, with respect to obtaining a uniform convergence rate, we could work directly with $\hat{\mathcal{F}}_{\alpha}$. More precisely,

Theorem 1.1. Assume that for all $f \in \mathcal{F}$ our predictions are in [-1,1]. With probability greater than $1-\delta$

$$\sup_{f \in \mathcal{F}} |\hat{\mathcal{L}}(f) - \mathcal{L}(f)| \le \inf_{\alpha} 2\sqrt{\frac{\log |\hat{\mathcal{F}}_{\alpha}| + \log \frac{1}{\delta}}{2n}} + 2\alpha$$

Proof. Fix α . Using the union bound, we have:

$$\sup_{\hat{f} \in \hat{\mathcal{F}}_{\alpha}} |\hat{\mathcal{L}}(\hat{f}) - \mathcal{L}(\hat{f})| \le 2\sqrt{\frac{\log |\hat{\mathcal{F}}_{\alpha}| + \log \frac{1}{\delta}}{2n}}$$

Let c(f) be the function $\hat{\mathcal{F}}_{\alpha}$ which covers f. Following from the definition of c(f) and $\hat{\mathcal{F}}_{\alpha}$, we have that for all $f \in \mathcal{F}$,:

$$|\mathcal{L}(f) - \mathcal{L}(c(f))| \le \alpha$$
$$|\hat{\mathcal{L}}(f) - \hat{\mathcal{L}}(c(f))| < \alpha$$

It follows that:

$$\begin{split} \sup_{f \in \mathcal{F}} |\hat{\mathcal{L}}(f) - \mathcal{L}(f)| &= \sup_{f \in \mathcal{F}} |\hat{\mathcal{L}}(f) - \hat{\mathcal{L}}(c(f)) - (\mathcal{L}(f) - \mathcal{L}(c(f))) + \hat{\mathcal{L}}(c(f)) - \mathcal{L}(c(f))| \\ &\leq 2\alpha + \sup_{f \in \mathcal{F}} |\hat{\mathcal{L}}(c(f)) - \mathcal{L}(c(f))| \\ &\leq 2\alpha + \sup_{\hat{f} \in \hat{\mathcal{F}}_{\alpha}} |\hat{\mathcal{L}}(\hat{f}) - \mathcal{L}(\hat{f})| \\ &\leq 2\alpha + \sqrt{\frac{\log |\hat{\mathcal{F}}_{\alpha}| + 2\log \frac{1}{\delta}}{2n}} \end{split}$$

The proof is completed by noting that α is arbitrary, so we can take a inf over α .

2 General covering numbers

Consider function class $G = \{g_{\theta}(Z) : \theta \in \Theta\}$. Given any metric d(g, g'), an ϵ cover of G in metric d is a set $G_d(\epsilon) = \{g_1(Z), \dots, g_N(Z)\}$ such that for all $g_{\theta} \in G$, there exists $j: d(g_{\theta}, g_j) \leq \epsilon$.

An example is least squares sub-Gaussian analysis, where $g_{\theta}(\xi) = \theta^{\top} P_X \xi$, and the covering is with respect to the Euclidean distance in the parameter space $\Theta = S^{d-1}$.

We are particularly interested in distances with respect to the true or empirical underlying distribution of Z. Let D be a distribution over Z, then we can define L_p distance between two functions g(z) and g'(z) as $d_D^p(g,g') = [E_D|g(z) - g'(z)|^p]^{1/p}$. We know that $d_P^p(g,g')$ increases as p increases (property of L_p distance).

Now $G_p(\epsilon) = \{g_1(Z), \dots, g_N(Z)\}$ is an L_p cover of G with respect to D if for all $g_\theta \in G$, there exists j such that

$$[E_{Z \sim D}|g_j(Z) - g_\theta(Z)|^p]^{1/p} \le \epsilon.$$

Moreover, consider an empirical distribution $Z_1^n = \{Z_1, \dots, Z_n\}$ over Z, then we may define empirical L_p cover of G as L_p cover of G with respect to the empirical p-norm:

$$[n^{-1}\sum_{i=1}^{n}|g(Z_i)-g'(Z_i)|^p]^{1/p}.$$

The smallest number of ϵ -cover, is called ϵ -covering number, and the log of covering number is called ϵ -entropy. Uniform (empirical) L_p entropy is the maximum L_p entropy of G under the worst case empirical distribution. Since L_p distance increases, therefore L_p entropy increases when p increases. However, the most interesting cases are $p \geq 2$, specially p=2 and $p=\infty$.

Relation to bracketing cover: L_{∞} cover is stronger than Bracketing cover. This is because if $\{g_j\}$ is an ϵ cover of g_{θ} , then $g_j^L = g_j - \epsilon$ is 2ϵ lower and g_j^U is 2ϵ upper bracketing cover. g_j^L and g_j^U is 2ϵ bracketing cover. The reverse is not necessarily true. For example, the classification example has finite bracketing cover but does not have finite L_{∞} cover. Because of the relationship, the analysis of bracketing cover can be used with L_{∞} cover. However, some times empirical L_{∞} cover is useful and one does not necessarily have a bracketing cover counterpart.

3 p-norm Covering Numbers

The problem with the previous notion of a cover is that it *uniformly* demands a good approximation to each f by an element in $\hat{\mathcal{F}}_{\alpha}$. Intuitively, it seems more natural to have a cover such that for each $f \in \mathcal{F}$ there is an element in the cover which is only on average close f. We now formalize this.

Assume that all hypotheses in our class \mathcal{F} make real valued predictions. Let $x_{1:n}$ be a set of n points. A set of vectors $V \subset \mathbb{R}^n$ is an α -cover, with respect to the p-norm, of \mathcal{F} on $x_{1:n}$ if for all $f \in \mathcal{F}$ there exists a $v \in V$ such that:

$$\left(\frac{1}{n}\sum_{i=1}^{n}|v_i - f(x_i)|^p\right)^{\frac{1}{p}} \le \alpha$$

We define the *p-norm covering number* $\mathcal{N}_p(\alpha, \mathcal{F}, x_{1:n})$ as the size of the minimal such cover V, i.e.:

$$\mathcal{N}_p(\alpha, \mathcal{F}, x_{1:n}) = \min\{|V| : V \text{ is an } \alpha\text{-cover, under the p-norm, of F on } x_{1:n}\}$$

Also define:

$$\mathcal{N}_p(\alpha, \mathcal{F}, n) = \sup_{x_{1:n}} \mathcal{N}_p(\alpha, \mathcal{F}, x_{1:n})$$
.

In other words, $\mathcal{N}_p(\alpha, \mathcal{F}, n)$ is the worst case covering number over $x_{1:n}$.

Observe that:

$$\mathcal{N}_p(\alpha, \mathcal{F}, \infty) \le \mathcal{N}_q(\alpha, \mathcal{F}, \infty)$$

for $p \leq q$. This is consequence of using the (normalized) p-norm in the definition of the covering number.

Note that:

$$\mathcal{N}_{\infty}(\alpha, \mathcal{F}, \infty) < |\hat{\mathcal{F}}_{\alpha}|$$

which follows directly from the definition of $\hat{\mathcal{F}}_{\alpha}$.

4 Rademacher Bounds

Theorem 4.1. (Discretization) Assume that all $f \in \mathcal{F}$ make predictions in [-1,1]. Let $\hat{\mathfrak{R}}_n(\mathcal{F})$ be the empirical Rademacher number of \mathcal{F} on $x_{1:n}$. We have:

$$\hat{\mathfrak{R}}_n(\mathcal{F}) \le \inf_{\alpha} \sqrt{\frac{2 \log N_1(\alpha, \mathcal{F}, x_{1:n})}{n}} + \alpha$$

Proof. Fix α and fix a minimal cover V. Define $B_{\alpha}(v)$ to be the hypothesis in \mathcal{F} that are α -covered by v. Using that $\bigcup_{v \in V} B_{\alpha}(v) = \mathcal{F}$,

$$\begin{split} \hat{\mathfrak{R}}_{n}(\mathcal{F}) &= \mathbb{E}\left[\sup_{f \in \mathcal{F}} \left(\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(x_{i})\right)\right] \\ &= \mathbb{E}\left[\sup_{v \in V} \sup_{f \in B_{\alpha}(v)} \left(\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(x_{i})\right)\right] \\ &= \mathbb{E}\left[\sup_{v \in V} \sup_{f \in B_{\alpha}(v)} \left(\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} v_{i} + \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} (f(x_{i}) - v_{i})\right)\right] \\ &\leq \mathbb{E}\left[\sup_{v \in V} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} v_{i}\right] + \mathbb{E}\left[\sup_{v \in V} \sup_{f \in B_{\alpha}(v)} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} (f(x_{i}) - v_{i})\right] \end{split}$$

Using Holder's inequality for the second term,

$$\mathbb{E}\left[\sup_{v\in V}\sup_{f\in B_{\alpha}(v)}\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}(f(x_{i})-v_{i})\right] \leq \mathbb{E}\left[\sup_{v\in V}\sup_{f\in B_{\alpha}(v)}\frac{1}{n}\sum_{i=1}^{n}|f(x_{i})-v_{i}|\right]$$

$$\leq \alpha$$

Using Massart's finite lemma for the first term:

$$\mathbb{E}\left[\sup_{v\in V} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} v_{i}\right] \leq \frac{\sup_{v\in V} ||v||_{2} \sqrt{2\log|V|}}{n}$$

$$\leq \sqrt{\frac{2\log|V|}{n}}$$

$$= \sqrt{\frac{2\log N_{1}(\alpha, \mathcal{F}, x_{1:n})}{n}}$$

The proof is completed by combining these last two bounds and noting that α was arbitrary (so we can take an inf over all $\alpha > 0$).

The following is immediate:

Corollary 4.2. Assume that all $f \in \mathcal{F}$ make predictions in [-1, 1]. We have:

$$\mathfrak{R}_n(\mathcal{F}) \leq \inf_{\alpha} \sqrt{\frac{2 \log N_1(\alpha, \mathcal{F}, n)}{n}} + \alpha$$