
Stat 928: Statistical Learning Theory Lecture: 17

Dudley’s Theorem and Packing Numbers

Instructor: Sham Kakade

1 Chaining and Dudley’s Theorem

Rather than choosing a fixed scale, one can integrate over all scales, as shown in the following theorem.

Theorem 1.1. Assume that all Fx1:n
⊂ Rn. Let R̂n(F) be the empirical Rademacher number of F on x1:n. We have:

R̂n(F) ≤ inf
α≥0

(
4α+ 12

∫ ∞
α

√
logN2(ε,F , x1:n)

n
dε

)

This theorem is subtly different from the discretization theorem. It is stated in terms of the 2-norm covering number
rather than the 1-norm covering number. Also note that we do no not restrict the range of f ∈ F .

Proof. Abusing notation we assume that F = Fx1:n
. Let

B = sup
f∈F

√√√√ 1

n

n∑
i=1

f2i

For j ≥ 0, set αj = 2−jBj and let Tj be a minimal αj-cover ofF with respect to the 2-norm. Let cj(f) be the element
in Tj which covers f . We also use the notation [cj(f)]i to denote the i− th component. Assume that T0 = {0} (which
is a B-cover).

The chaining method expresses f as f = f − cN (f) +
∑N
j=1(cj(f)− cj−1(f)), since c0(f) = 0. Now we have:

R̂n(F) = E

[
sup
f∈F

(
1

n

n∑
i=1

εifi

)]

= E

sup
f∈F

 1

n

n∑
i=1

εi(fi − [cN (f)]i +

N∑
j=1

([cj(f)]i − [cj−1(f)]i))


≤ E

[
sup
f∈F

(
1

n

n∑
i=1

εi(fi − [cN (f)]i)

)]
+ E

sup
f∈F

 1

n

n∑
i=1

N∑
j=1

εi([cj(f)]i − [cj−1(f)]i)


≤ E

[
sup
f∈F

(
1

n

n∑
i=1

εi(fi − [cN (f)]i)

)]
+

N∑
j=1

E

[
sup
f∈F

(
1

n

n∑
i=1

εi([cj(f)]i − [cj−1(f)]i)

)]

≤ αN +

N∑
j=1

E

[
sup
f∈F

(
1

n

n∑
i=1

εi([cj(f)]i − [cj−1(f)]i)

)]

where we have appealed to Cauchy-Schwarz in the last step.

1



Appealing to Massart’s lemma:

E

[
sup
f∈F

(
1

n

n∑
i=1

εi([cj(f)]i − [cj−1(f)]i)

)]
≤

(supf∈F ||cj(f)− cj−1(f)||2)
√
2 log |Tj ||Tj−1|

n

And by the triangle inequality:

sup
f∈F
||cj(f)− cj−1(f)||2 ≤ sup

f∈F
||cj(f)− f ||2 + sup

f∈F
||f − cj−1(f)||2

≤
√
nαj +

√
nαj−1

=
√
nαj + 2

√
nαj

= 3
√
nαj

where
√
n factor comes from the fact that the 2-norm in the covering number definition is a normalized quantity. So

we have

E

[
sup
f∈F

(
1

n

n∑
i=1

εi([cj(f)]i − [cj−1(f)]i)

)]
≤

3αj
√

2 log |Tj ||Tj−1|√
n

≤
6αj
√

log |Tj |√
n

since |Tj | ≥ |Tj−1|.

Continuing, and using that 2(αj − αj+1) = αj

R̂n(F) ≤ αN + 6

N∑
j=1

αj

√
log |Tj |
n

= αN + 6

N∑
j=1

αj

√
logN2(αj ,F , x1:n)

n

≤ αN + 12

N∑
j=1

(αj − αj+1)

√
logN2(αj ,F , x1:n)

n

≤ αN + 12

∫ α0

αN+1

√
logN2(α,F , x1:n)

n
dα

≤ αN + 12

∫ ∞
αN+1

√
logN2(α,F , x1:n)

n
dα

Pick any α ≥ 0. Let N be the largest integer j such that αj ≥ 2α. Hence, αN ≥ 2α and αN+1 = αN/2 ≥ α, so
the integral from αN+1 to∞ is upper bounded by the integral from α to∞. Also, since αN+1 ≤ 2α, we have that
αN ≤ 4α, which completes the proof.
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2 Examples

2.1 Vector Spaces

Assume that F |x1:n
is finite dimensional vector space of dimension k. Then one can show N2(α,F , x1:n) ≤ (1/α)k.

Then using the discretization bound, with α =
√
1/n, we have:

R̂n(F) ≤ 2

√
k log n

n

From Dudley’s Thm, we get the sharper bound that:

R̂n(F) ≤ 12

√
k

n

∫ 1

0

√
log

1

α
dα ≤ 12

√
π

2

√
k

n

Here, note that the covering number is 1 when α > 1. Also, the integral can be evaluated using the change of variables
y = e−y

2

(which ends up looking like a Gaussian).

2.2 Increasing Functions

Now assume that F |x1:n
is the set of non-decreasing functions. Considering discretizing Y = [−1, 1] into bins of size

1/α. We can approximate a function in f ∈ F by: for each of the bins (there are 1/α bins), just specify one of the n
points at which the function increases above that bin. This means the covering number is at most n1/α.

Hence, from the discretization theorem, we get;

R̂n(F) ≤ constant
(
log n

n

)1/3

(by optimizing α). From Dudley’s theorem, we get the sharper result:

R̂n(F) ≤ constant

√
log n

n

The improved exponent is actually quite important.

3 Combinatorial Dimensions for Real Valued Function Classes

We will now define some combinatorial dimensions for real valued function classes. We will then see how to get upper
bounds for covering numbers in terms of these dimensions. The first dimension is called Pollard’s pseudodimension.

Definition 3.1. Let F ⊆ [0, 1]X . We say that F P -shatters a set X = {x1, . . . , xn} ⊆ X if there exist s1, . . . , sn such
that, for all E ⊆ X , there exists fE ∈ F such that,

∀xi ∈ E, fE(xi) ≥ si
∀xi ∈ X − E, fE(xi) < si

The pseudodimension of F , denoted by Pdim(F), is the size of a largest P -shattered set.

The pseudodimension does not take any scale into account. The fat shattering dimensions measures the complexity of
the class F at some scale α.
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Definition 3.2. Let F ⊆ [0, 1]X . We say that F Pα-shatters a set X = {x1, . . . , xn} ⊆ X if there exist s1, . . . , sn
such that, for all E ⊆ X , there exists fE ∈ F such that,

∀xi ∈ E, fE(xi) ≥ si + α

∀xi ∈ X − E, fE(xi) ≤ si − α

The fat shattering dimension of F at scale α, denoted by fatα(F), is the size of a largest Pα-shattered set.

4 Covering and Packing Numbers

We have already seen the definition of covering numbers before. Packing numbers are closely related to covering
numbers. Depending on the situation, we might prefer to work with one or the other. Note that both these quantities
can be defined in a general (pseudo)metric space.

Let (X , d) be a pseudometric space. Let A ⊆ X and α > 0. We say that B ⊆ A is an α-cover of A iff ∀a ∈ A,
∃b ∈ B such that d(a, b) < α. Now we define the covering number as

Nd(α,A) := min {|B| |B is an α-cover of A} .

Let A ⊆ X and α > 0. We say that A is α-separated if ∀a, b ∈ A, a 6= b, d(a, b) ≥ α. Define the packing number as,

Md(α,A) := max {|A′| |A′ is α-separated, A′ ⊆ A} .

As we said, these two numbers are closely related.

Lemma 4.1. For any pseudometric space (X , d) and any A ⊆ X and α > 0,

Md(2α,A) ≤ Nd(α,A) ≤Md(α,A) .

Proof. If M is a 2α-separated subset of A and N is an α-cover of A then N must select a point within α distance
of each of the points in M . These points will necessarily be distinct since points in M are at least 2α apart. Thus
|M | ≤ |N |. This proves the first half of the lemma.

If M is a maximal α-separated subset of A then M has to be an α-cover. Because if it is not, then there is a point
x ∈ A such there is no point of M within a distance of α from x. In that case, x can be added to M while still keeping
it α-separated. This violates the maximality of M . Thus, Nd(α,A) ≤ |M | =Md(α,A). This proves the second half
of the lemma.
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