Stat 928: Statistical Learning Theory Lecture: 18
Mistake Bound Model, Halving Algorithm, Linear Classifiers, & Perceptron

Instructor: Sham Kakade

1 Introduction

This course will be divided into 2 parts. In each part we will make different assumptions about the data generating
process:

Online Learning No assumptions about data generating process. Worst case analysis. Fundamental connections to
Game Theory.

Statistical Learning Assume data consists of independently and identically distributed examples drawn according to
some fixed but unknown distribution.

Our examples will come from some space X x). Given a data set
{(ze,90) oy € (X x V)T,

our goal is to predict yr41 for a new point zpi1. A hypothesis is simply a function h : & —). Sometimes, a
hypothesis will map to a set D (for decision space) larger than). Depending on the nature of the set), we get special
cases of the general prediction problem.

Binary classification) = {—1,+1}
Multiclass classification J = {1,2,..., K} =: [K]for K > 3
Regression Y = [-B,B]lorY =R

A set of hypotheses is often called a hypotheses class. If the range of a hypothesis is {—1,+1} (or {0, 1}) then it also
called a concept. A concept can be identified with the subset of X on which it is 1.

2 Mistake Bound Model

In this model, learning proceeds in rounds, as we see examples one by one. Suppose) = {—1, +1}. At the beginning
of round ¢, the learning algorithm A has the hypothesis h;. In round ¢, we see x; and predict h(z;). At the end of the
round, y; is revealed and A makes a mistake if hy(z;) # y;. The algorithm then updates its hypothesis to h;; and
this continues till time 7.

Suppose the labels were actually produced by some function f in a given concept class C. Then it is natural to bound
the total number of mistakes the learner commits, no matter how long the sequence. To this end, define

T

mistake(A,C) = rednax Z 1[he(xe) # fz)] -
s 4y 1T =1

We can now define what it means for an algorithm to learn a class in the mistake bound model.
Definition 2.1. An algorithm A learns a class C with mistake bound M iff
mistake(A,C) < M .
Note that we are ignoring efficiency issues here. We have not said anything about the amount of computation .4 has

to do in each round in order to update its hypothesis from h; to h; 1. Setting this issue aside for a moment, we have a
remarkably simple algorithm HALVING (C) that has a mistake bound of 1g(|C|) for any finite concept class C.

For a finite set H of hypotheses, define the hypothesis majority (#) as follows,

+1 {heH|h(z) =+1} > [H|/2,
—1 otherwise .

majority (H) (z) := {

Algorithm 1 HALVING (C)

C1 «—C

h1 < majority (Cy)

fort =1toT do
Receive x;
Predict hy(x)
Receive y;
Copr < {f €C| f(ze) =y}
hiy1 < majority (Cyy1)

end for

Theorem 2.2. For any finite concept class C, we have

mistake(HALVING (C) ,C)) < 1g|C| .

Proof. The key idea is that if the algorithm makes a mistake then at least half of the hypothesis in C; are eliminated.
Formally,

hi(ze) Zye = [Copa| < [Cel/2-

Therefore, denoting the number of mistakes up to time ¢ by My,

M, = Z 1[he(xe) # ye]

t=1

we have | c
1
oM, = oM (1)

ICit1] <

Since there is an f € C which perfectly classifies all z;, we also have

1 < [Ciqa] -)
Combining (1) and (2), we have
L < €]
= 2A{t Y
which gives M; < lIg(|C]). O

3 Linear Classifiers and Margin

Let us now look at a concrete example of a concept class. Suppose X = R? and we have a vector w € R?. We define
the hypothesis,
hy(x) =sgn(w - x) ,

where sgn(z) = 2-1[z > 0] — 1 gives the sign of z. With some abuse of terminology, we will often speak of “the
hypothesis w” when we actually mean “the hypothesis h,,”. The class of linear classifiers in the (uncountable) concept
class

Ciin := {hw |w € Rd} .

Note that w and cw yield the same linear classifier for any ¢ > 0.
Suppose we have a data set that is linearly separable. That is, there is a w™ such that,
Yt € [T], yr = sgn(w”™ - zy) . 3)

Separability means that y; (w* -) > 0 for all t. The minimum value of this quantity over the data set is referred to as
the margin. Let us make the assumption that the margin is at least v for some v > 0.

Assumption M. There exists a w* € R? for which (3) holds. Further assume that

min v, (w* - x¢) =7, (4)
te[T)
Sfor some v > 0.
Define
|z1.¢]| := max ||z
te[T)

We now show that under Assumption M, our simple halving algorithm can be used with a suitable finite subset of Ciiy,
to derive a mistake bound. Let W, be those w such that wj is of the form m~y/2||z1.7||d for some

m € {=[2]|zellllw*lld/~], ..., =1,0,+1,. .. [2[l@rellw”[ld/¥1} -

In other words, since each coordinate of w* is in the range [—||w™*||, |[w*||], we have discretized that interval at a scale
of v/2||z1.7||d. We want to run the halving algorithm on the (finite) concept class,

Cl, = 1{hw|weW,} .
. d
The size of this class is ([M} + 1) . Note that there exists a W € W, such that,

Vi€ [d), |wf — ;| <v/2lxnr|d.

Thus, we have, for any ¢ € [T,

*

lye (@ -) — ye(w™ - @) = |0 - 2y — w™ - x4

d
< Z [W; — wy| - |z 4]
i—1

d
7y
< —||Z
= ; 2||J)1T||d|| t”

<7/2.

This, together with Assumption R, implies that y;(w - ;) > «/2 > 0. Thus, there exists a hypothesis in C
classifies the data set perfectly. Theorem 2.2 immediately gives the following corollary.

7 that

lin

Corollary 3.1. Under Assumption M, HALVING (C;]

lin

dlg(ﬁd'xl‘t' w ” +1>
gl

This bound is nice because even though we had an uncountable concept class to begin with, the margin assumption
allowed us to work with a finite subset of the concept class and we were able to derive a mistake bound. However, the
result is unsatisfactory because running the halving algorithm on C||_ is extremely inefficient. One might wonder if
one can use the special structure of the space of linear classifiers to implement the halving algorithm more efficiently.
Indeed, it possible to implement a variant of the halving algorithm efficiently using the ellipsoid method developed for
the linear programming feasibility problem.

) makes at most

mistakes.

Note that the mistake bound depends explicitly on the dimension d of the problem. We would also like to be able
to give a dimension independent mistake bound. Indeed, a classic algorithm called PERCEPTRON has such a mistake
bound.

4 The Perceptron Algorithm

Algorithm 2 PERCEPTRON
wy < 0
fort =1to T do
Receive z; € R?
Predict sgn(w; -)
Receive y, € {—1,+1}
if sgn(w; - x) # y; then
Wey] < Wi + YTt
else
Wi41 < Wt
end if
end for

The following theorem gives a dimension independent bound on the number of mistakes the PERCEPTRON algorithm
makes.
Theorem 4.1. Suppose Assumption M holds. Let

T

My = Z 1 [sgn(wy - @) #)

t=1
denote the number of mistakes the PERCEPTRON algorithm makes. Then we have,

21 ? - [lw*]?
Mr < T

Proof. The key idea of the proof is to look at how the quantity w* - w; evolves over time. We first provide an lower
bound for it. Define m; = 1 [sgn(w; - ;) # y:|. Note that w, 1 = w; + y,x,m and My = >, m;. We have,
W W1 = W wy + YTy
=w" - wp + ye(w* - z)My

> w* - wp +ymy . (Assumption M)

Unwinding the recursion, we get
w* - wry > w - wy +yMp =My . (5)

Now, we use Cauchy-Schwarz inequality to get the upper bound,
w* - wri < Jlw|| - florgal (6)
Moreover,

we | = llwe + yeweme ||
= [well? + 2ye(wy - me)my + [|34]*my

< Jlwell? + 0+ [z |®me |

where the last step follows because y:(w; - #:) < 0 when a mistake is made and ||x:|| < ||z1.7|. Unwinding the
recursion once again, we get,

lwra|® < [lwil? + |10 |* My = [|@1.0]* My (7
Combining (5), (6) and (7) gives,
YMr < w* - wryr < 0| - lorall < Jw* - |lzerlly Mz

This implies that Mz < ||w*||? - |lz1.7]|% /% O

