Stat 928: Statistical Learning Theory Lecture: 19
Perceptron Lower Bound & The Winnow Algorithm

Instructor: Sham Kakade

1 Lower Bound

Theorem 1.1. Suppose X = {z € R?||z| < 1} and v% < d. Then for any deterministic algorithm, there exists a

data set which is separable by a margin of v on which the algorithm makes at least LW%J mistakes.

Proof. Letn = L%J Note that n < d and 72n < 1. Let e; be the unit vector with a 1 in the ith coordinate and zeroes
in others. Consider e, . .., e,. We now claim that, for any b € {—1, +1}", there is a w with ||w|| < 1 such that

Vi € [n], bi(w; -e;) =7.

To see this, simply choose w; = vb;. Then the above equality is true. Moreover, ||w[|? =27 | b? = ?n < 1.

Now given an algorithm A, define the data set {(x;,y;)}7, as follows. Let x; = e; for all ¢ and y; = —A(z1).
Define y; for ¢ > 1 recursively as

Yi = — AT, Y1, T 1, i1, Ti) -
It is clear that the algorithm makes n mistakes when run on this data set. By the above claim, no matter what y;’s turn
out to be, the data set is separable by a margin of ~. O

2 The Winnow Algorithm

Algorithm 1 WINNOW
Input parameter: 77 > 0 (learning rate)

wy < él
fort =1to T do
Receive z; € R
Predict sgn(wy - x4)
Receive y; € {—1,+1}
if sgn(wy - ) # y; then
Vi € [d], Wi41,i < wuexpzw
else
W41 < Wt
end if
end for

where Z; = E?Zl We eXp(nytwtﬂi)

Theorem 2.1. Suppose Assumption M holds. Further assume that w* > 0. Let

T
Mrp = Z 1 [sgn(wy - @) # )

t=1



denote the number of mistakes the WINNOW algorithm makes. Then, for a suitable choice of n, we have,
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Proof. Let u* = w*/||w*||. Since we assume w* > 0, u* is a probability distribution. At all times, the weight
vector wy maintained by WINNOW is also a probability distribution. Let us measure the progress of the algorithm by
analyzing the relative entropy between these two distributions at time ¢. Accordingly, define
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When there is no mistake ®;,; = ®;. On a round when a mistake occurs, we have
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where the last inequality follows from the definition of u* and Assumption M. Let L = ||z1.7||c. Then yz;; €
[—L, L] for all ¢, 4. Then we can bound

d
Zy = Zwt’ienytlt,i
i=1
using the convexity of the function ¢ — € on the interval [—L, L] as follows.
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because having a mistake implies y; (w; - ;) < 0 and e"* — e~ > 0. So we have proved

2

nL —nL
n(Z,) <In (64””) .
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Define

* enL -+ einL
C(n) = my/wlly — In () _



Combining (1) and (2) then gives us
Pri1 — P < —C(n)1 [y # sgn(wy - x)] .

Unwinding the recursion gives,
(I)T+1 S (bl - C(’I])MT .

Since relative entropy is always non-negative ®7, > 0. Further,

d d
o, = Zu;‘ In(du) < Zu;‘lnd =1Ind
i=1 i=1

which gives us
0 S Ind — C(?’])MT

and therefore My < lez:]l). Setting

1= ot (L2
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to maximize the denominator C'(7) gives
Ind

v
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where g(€) := £ In(1 + €) + 155 In(1 — ¢). Finally, noting that g(e) > €2/2 proves the theorem.
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