
Stat 928: Statistical Learning Theory Lecture: 20

The Perceptron for Generalized Linear Models and Single Index Models

Instructor: Sham Kakade

1 Learning Generalized Linear Models

Algorithm 1 GLM-tron
Input: function u(·)
w1 := 0;
for t = 1, 2, . . . do
ŷt := u(wt · x);
wt+1 := wt + (yt − ŷt)xt;

end for

To analyze the performance of the algorithm, we show that if we run the algorithm for sufficiently many iterations,
one of the predictors ht obtained must be nearly-optimal, compared to the Bayes-optimal predictor.

Theorem 1.1. Suppose the sequence (x1, y1), (x2, y2), . . . satisfy, for all t:

• ‖xt‖2 ≤ 1 and yt ∈ [0, 1]

• u : R→ [0, 1] is a known non-decreasing 1-Lipschitz function

• there exists a w such that yt = u(w · xt)

Then GLM-tron satisfies:
∞∑
t=1

(yt − ŷt)2 ≤ ‖w‖2

The proof is based on the following lemma:

Lemma 1.2. At iteration t in GLM-tron,

‖wt − w‖2 − ‖wt+1 − w‖2 ≥ (yt − ŷt)2

Proof. We have

‖wt − w‖2 − ‖wt+1 − w‖2 = 2(yt − ŷt)(w · xt − wt · xt)− ‖(yt − ŷt)xt‖2 . (1)

Consider the first term above,

2

m

m∑
i=1

(yt − ŷt)(w · xt − wt · xt) = 2(u(w · xt)− u(wt · xt))(w · xt − wt · xt)
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Using that u is non-decreasing and 1-Lipschitz, we have:

2(u(w · xt)− u(wt · xt))(w · xt − wt · xt) ≥ 2(u(w · xt)− u(wt · xt))2 = 2(yt − ŷt)2. (2)

To justify this step, consider the case where w · xt > wt · xt. We then have (using that u is non-decreasing and
1-Lipschitz)

0 ≤ u(w · xt)− u(wt · xt) ≤ |w · xt − wt · xt| = w · xt − wt · xt
The case where w · xt > wt · xt is identical.

For the second term in (4), we have

‖(yt − ŷt)xt‖2 = (yt − ŷt) ‖xt‖2 ≤ (yt − ŷt)2 (3)

which completes the proof.

Hence, we have that:
T∑

t=1

(yt − ŷt)2 ≤
∥∥w1 − w

∥∥2 − ‖wT+1 − w‖2 ≤ ‖w‖2

which completes the proof.

2 Isotonic Regression and the PAV algorithm

The Pool Adjacent Violators (PAV) algorithm is finds the best monotonic one dimensional fit for (ẑ1, y1), (ẑ2, y2), . . . (ẑm, ym),
where the zi and yi’s are real. Precisely,

PAV((ẑ1, y1), (ẑ2, y2), . . . (ẑm, ym)) = argminnondecreasing functions f
1

m

m∑
i=1

(yi − f(zi))2

If u is returned by PAV, then it satisfies the following calibration property for any y ∈ R∑
i s.t. u(zi)=y

(yi − z) = 0

In other words, wherever the function u is constant (say when u is y) then this constant must be the average of all yi
where u(zi) = y). If this were not the case, note that we could slightly shift the function at y without breaking the
monotonicity property so that the square error is decreased.

With this observation the PAV algorithm can be implemented in O(m logm) time. The algorithm first sorts the zi’s.
Now the algorithm partitions the data into “pools”, where the function value is constant in each pool. Initially, each
point belongs to it’s own pools. If the function is non-monotonic, then any two pools violating the monotonicity
property can be merged (and the function value u is the average of the points within the pool).

3 (Batch) Learning of Single Linear Models

Now suppose that u is not known.

Here PAV is the isotonic regression algorithm (the “Pool Adjacent Violator” algorithm). It finds the best 1-dimensional
non-decreasing function (with respect to the square loss).
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Algorithm 2 Isotron
Input: data 〈(xi, yi)〉mi=1.
w1 := 0;
for t = 1, 2, . . . do
ut := PAV ((wt · x1, y1), . . . , (wt · xm, ym))
For all i, set ŷt,i := ut(wt · xi)

wt+1 := wt +
1

m

m∑
i=1

(yi − ŷt,i)xi

end for

Theorem 3.1. (Isotron algorithm for unknown u) Define the loss on the dataset as:

L̂(ut, wt) =
1

m

m∑
i=1

(yi − ut(wt · xi))2

Suppose the dataset data 〈(xi, yi)〉mi=1 satisfy for all t:

• ‖xi‖2 ≤ 1 and yi ∈ [0, 1] for i = 1, 2, . . .m.

• u : R→ [0, 1] is a non-decreasing 1-Lipschitz function.

• There exists a w such that yi = u(w · xi) for i = 1, 2, . . .m.

Then Isotron satisfies:
∞∑
t=1

L̂(ut, wt) ≤ ‖w‖2

The following corollary shows how this results in a batch optimization algorithm.

Corollary 3.2. (Optimization) For any iteration T , we have:

1

T

∞∑
t=1

L̂(ut, wt) ≤
‖w‖2

T

So there exists a t ≤ T such that:

L̂(ut, wt) ≤
‖w‖2

T

(and this hypothesis can be found by explicitly computing L̂(ut, wt) for each t ≤ T ).

The following lemma is useful

Lemma 3.3. At iteration t in Isotron,

‖wt − w‖2 − ‖wt+1 − w‖2 ≥ L̂(ut, wt)

Proof. Let v be any inverse of u (this v may not be unique and we choose one arbitrarily).

We have

‖wt − w‖2 − ‖wt+1 − w‖2 =
2

m

m∑
i=1

(yi − ŷt,i)(w · xi − wt · xi)−

∥∥∥∥∥ 1

m

m∑
i=1

(yi − ŷt,i)xi

∥∥∥∥∥
2

. (4)
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Consider the first term above,

2

m

m∑
i=1

(yi − ŷt,i)(w · xi − wt · xi) =
2

m

m∑
i=1

(yi − ŷt,i)(w · xi − v(ŷt,i)) +
2

m

m∑
i=1

(yi − ŷt,i)(v(ŷt,i)− wt · xi)

By the same argument as in the proof of GLM-tron (using that u = v−1(·) is non-decreasing and 1-Lipschitz), we
have that for the first term above:

2

m

m∑
i=1

(yi − ŷt,i)(w · xi − v(ŷt,i)) ≥
2

m

m∑
i=1

(yi − ŷt,i)(u(w · xi)− u(v(ŷt,i)))

=
2

m

m∑
i=1

(yi − ŷt,i)2

= 2L̂(ut, wt)

We also have that:
2

m

m∑
i=1

(yi − ŷt,i)v(ŷt,i) = 0 (5)

and
2

m

m∑
i=1

(yi − ŷt,i)wt · xi ≤ 0 (6)

Equation 5 follows from the calibration property. To see this, consider those i for which ŷt,i = y (for some arbitrary
y). The sum over these i is 0. Hence, the sum over all i is 0. For Equation 6, recall that ut(·) is the output of the
isotonic regression, e.g. ut = PAV ((wt · x1, y1), . . . , (wt · xm, ym)). Note that ut(·) + αI(·) is also an increasing
function when α > 0 and I(·) is the identity function. Equation 6 is just the first derivative condition that for α > 0 —
note that ut(·) + αI(·) (for α > 0) does not have lower square loss than ut(·). In other words, if Equation 6 did not
hold, then note that this would imply that for a sufficiently small α > 0, the function u(·) + αI(·) would be a better
monotonic function for the data ((wt · x1, y1), . . . , (wt · xm, ym)), which violates the optimality of PAV.

For the second term in (4), Jensen’s inequality implies∥∥∥∥∥ 1

m

m∑
i=1

(yi − ŷt,i)xi

∥∥∥∥∥
2

≤ 1

m

m∑
i=1

‖(yi − ŷt,i)xi‖2 =
1

m

m∑
i=1

(yi − ŷt,i)2 ‖xi‖2 ≤ L̂(ut, wt) (7)

which completes the proof.

For the proof of the theorem, we have that (for all T ):

T∑
t

L̂(ut, wt) ≤
∥∥w1 − w

∥∥2 − ‖wT+1 − w‖2 ≤ ‖w‖2

which completes the proof.
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