Stat 928: Statistical Learning Theory

Lecture: 20

The Perceptron for Generalized Linear Models and Single Index Models

Instructor: Sham Kakade

1 Learning Generalized Linear Models

Algorithm 1 GLM-tron

```
\begin{array}{l} \text{Input: function } u(\cdot) \\ w_1 := 0; \\ \text{for } t = 1, 2, \dots \text{do} \\ \hat{y}_t := u(w_t \cdot x); \\ w_{t+1} := w_t + (y_t - \hat{y}_t) x_t; \\ \text{end for} \end{array}
```

To analyze the performance of the algorithm, we show that if we run the algorithm for sufficiently many iterations, one of the predictors h_t obtained must be nearly-optimal, compared to the Bayes-optimal predictor.

Theorem 1.1. Suppose the sequence $(x_1, y_1), (x_2, y_2), \ldots$ satisfy, for all t:

- $||x_t||^2 \le 1$ and $y_t \in [0,1]$
- $u: \mathbb{R} \to [0,1]$ is a known non-decreasing 1-Lipschitz function
- there exists a w such that $y_t = u(w \cdot x_t)$

Then GLM-tron satisfies:

$$\sum_{t=1}^{\infty} (y_t - \hat{y}_t)^2 \le ||w||^2$$

The proof is based on the following lemma:

Lemma 1.2. At iteration t in GLM-tron,

$$\|w_t - w\|^2 - \|w_{t+1} - w\|^2 \ge (y_t - \hat{y}_t)^2$$

Proof. We have

$$\|w_t - w\|^2 - \|w_{t+1} - w\|^2 = 2(y_t - \hat{y}_t)(w \cdot x_t - w_t \cdot x_t) - \|(y_t - \hat{y}_t)x_t\|^2.$$
 (1)

Consider the first term above,

$$\frac{2}{m} \sum_{i=1}^{m} (y_t - \hat{y}_t)(w \cdot x_t - w_t \cdot x_t) = 2(u(w \cdot x_t) - u(w_t \cdot x_t))(w \cdot x_t - w_t \cdot x_t)$$

Using that u is non-decreasing and 1-Lipschitz, we have:

$$2(u(w \cdot x_t) - u(w_t \cdot x_t))(w \cdot x_t - w_t \cdot x_t) \ge 2(u(w \cdot x_t) - u(w_t \cdot x_t))^2 = 2(y_t - \hat{y}_t)^2.$$
 (2)

To justify this step, consider the case where $w \cdot x_t > w_t \cdot x_t$. We then have (using that u is non-decreasing and 1-Lipschitz)

$$0 \le u(w \cdot x_t) - u(w_t \cdot x_t) \le |w \cdot x_t - w_t \cdot x_t| = w \cdot x_t - w_t \cdot x_t$$

The case where $w \cdot x_t > w_t \cdot x_t$ is identical.

For the second term in (4), we have

$$\|(y_t - \hat{y}_t)x_t\|^2 = (y_t - \hat{y}_t)\|x_t\|^2 \le (y_t - \hat{y}_t)^2$$
(3)

which completes the proof.

Hence, we have that:

$$\sum_{t=1}^{T} (y_t - \hat{y}_t)^2 \le \|w^1 - w\|^2 - \|w_{T+1} - w\|^2 \le \|w\|^2$$

which completes the proof.

2 Isotonic Regression and the PAV algorithm

The Pool Adjacent Violators (PAV) algorithm is finds the best monotonic one dimensional fit for $(\hat{z}_1, y_1), (\hat{z}_2, y_2), \dots (\hat{z}_m, y_m)$, where the z_i and y_i 's are real. Precisely,

$$\mathsf{PAV}((\hat{z}_1, y_1), (\hat{z}_2, y_2), \dots (\hat{z}_m, y_m)) = \arg\min_{\mathsf{nondecreasing functions } f} \frac{1}{m} \sum_{i=1}^m (y_i - f(z_i))^2$$

If u is returned by PAV, then it satisfies the following calibration property for any $y \in \mathbb{R}$

$$\sum_{i \text{ s.t. } u(z_i)=y} (y_i-z)=0$$

In other words, wherever the function u is constant (say when u is y) then this constant must be the average of all y_i where $u(z_i) = y$). If this were not the case, note that we could slightly shift the function at y without breaking the monotonicity property so that the square error is decreased.

With this observation the PAV algorithm can be implemented in $O(m \log m)$ time. The algorithm first sorts the z_i 's. Now the algorithm partitions the data into "pools", where the function value is constant in each pool. Initially, each point belongs to it's own pools. If the function is non-monotonic, then any two pools violating the monotonicity property can be merged (and the function value u is the average of the points within the pool).

3 (Batch) Learning of Single Linear Models

Now suppose that u is not known.

Here PAV is the isotonic regression algorithm (the "Pool Adjacent Violator" algorithm). It finds the best 1-dimensional non-decreasing function (with respect to the square loss).

Algorithm 2 Isotron

Input: data
$$\langle (x_i, y_i) \rangle_{i=1}^m$$
. $w^1 := 0$; for $t = 1, 2, \dots$ do $u_t := \mathsf{PAV} \left((w_t \cdot x_1, y_1), \dots, (w_t \cdot x_m, y_m) \right)$ For all i , set $\hat{y}_{t,i} := u_t(w_t \cdot x_i)$ $w_{t+1} := w_t + \frac{1}{m} \sum_{i=1}^m (y_i - \hat{y}_{t,i}) x_i$

Theorem 3.1. (Isotron algorithm for unknown u) Define the loss on the dataset as:

$$\hat{L}(u_t, w_t) = \frac{1}{m} \sum_{i=1}^{m} (y_i - u_t(w_t \cdot x_i))^2$$

Suppose the dataset data $\langle (x_i, y_i) \rangle_{i=1}^m$ satisfy for all t:

- $||x_i||^2 \le 1$ and $y_i \in [0, 1]$ for i = 1, 2, ... m.
- $u: \mathbb{R} \to [0,1]$ is a non-decreasing 1-Lipschitz function.
- There exists a w such that $y_i = u(w \cdot x_i)$ for i = 1, 2, ... m.

Then Isotron satisfies:

$$\sum_{t=1}^{\infty} \hat{L}(u_t, w_t) \le \|w\|^2$$

The following corollary shows how this results in a batch optimization algorithm.

Corollary 3.2. (Optimization) For any iteration T, we have:

$$\frac{1}{T} \sum_{t=1}^{\infty} \hat{L}(u_t, w_t) \le \frac{\|w\|^2}{T}$$

So there exists a $t \leq T$ such that:

$$\hat{L}(u_t, w_t) \le \frac{\|w\|^2}{T}$$

(and this hypothesis can be found by explicitly computing $\hat{L}(u_t, w_t)$ for each $t \leq T$).

The following lemma is useful

Lemma 3.3. At iteration t in Isotron,

$$\|w_t - w\|^2 - \|w_{t+1} - w\|^2 \ge \hat{L}(u_t, w_t)$$

Proof. Let v be any inverse of u (this v may not be unique and we choose one arbitrarily).

We have

$$\|w_t - w\|^2 - \|w_{t+1} - w\|^2 = \frac{2}{m} \sum_{i=1}^m (y_i - \hat{y}_{t,i})(w \cdot x_i - w_t \cdot x_i) - \left\| \frac{1}{m} \sum_{i=1}^m (y_i - \hat{y}_{t,i})x_i \right\|^2.$$
 (4)

Consider the first term above,

$$\frac{2}{m}\sum_{i=1}^{m}(y_i-\hat{y}_{t,i})(w\cdot x_i-w_t\cdot x_i) = \frac{2}{m}\sum_{i=1}^{m}(y_i-\hat{y}_{t,i})(w\cdot x_i-v(\hat{y}_{t,i})) + \frac{2}{m}\sum_{i=1}^{m}(y_i-\hat{y}_{t,i})(v(\hat{y}_{t,i})-w_t\cdot x_i)$$

By the same argument as in the proof of GLM-tron (using that $u=v^{-1}(\cdot)$ is non-decreasing and 1-Lipschitz), we have that for the first term above:

$$\frac{2}{m} \sum_{i=1}^{m} (y_i - \hat{y}_{t,i})(w \cdot x_i - v(\hat{y}_{t,i})) \ge \frac{2}{m} \sum_{i=1}^{m} (y_i - \hat{y}_{t,i})(u(w \cdot x_i) - u(v(\hat{y}_{t,i})))$$

$$= \frac{2}{m} \sum_{i=1}^{m} (y_i - \hat{y}_{t,i})^2$$

$$= 2\hat{L}(u_t, w_t)$$

We also have that:

$$\frac{2}{m} \sum_{i=1}^{m} (y_i - \hat{y}_{t,i}) v(\hat{y}_{t,i}) = 0$$
 (5)

and

$$\frac{2}{m} \sum_{i=1}^{m} (y_i - \hat{y}_{t,i}) w_t \cdot x_i \le 0 \tag{6}$$

Equation 5 follows from the calibration property. To see this, consider those i for which $\hat{y}_{t,i} = y$ (for some arbitrary y). The sum over these i is 0. Hence, the sum over all i is 0. For Equation 6, recall that $u_t(\cdot)$ is the output of the isotonic regression, e.g. $u_t = \mathsf{PAV}\left((w_t \cdot x_1, y_1), \dots, (w_t \cdot x_m, y_m)\right)$. Note that $u_t(\cdot) + \alpha I(\cdot)$ is also an increasing function when $\alpha > 0$ and $I(\cdot)$ is the identity function. Equation 6 is just the first derivative condition that for $\alpha > 0$ — note that $u_t(\cdot) + \alpha I(\cdot)$ (for $\alpha > 0$) does not have lower square loss than $u_t(\cdot)$. In other words, if Equation 6 did not hold, then note that this would imply that for a sufficiently small $\alpha > 0$, the function $u(\cdot) + \alpha I(\cdot)$ would be a better monotonic function for the data $((w_t \cdot x_1, y_1), \dots, (w_t \cdot x_m, y_m))$, which violates the optimality of PAV.

For the second term in (4), Jensen's inequality implies

$$\left\| \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_{t,i}) x_i \right\|^2 \le \frac{1}{m} \sum_{i=1}^{m} \left\| (y_i - \hat{y}_{t,i}) x_i \right\|^2 = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_{t,i})^2 \left\| x_i \right\|^2 \le \hat{L}(u_t, w_t) \tag{7}$$

which completes the proof.

For the proof of the theorem, we have that (for all T):

$$\sum_{t=1}^{T} \hat{L}(u_t, w_t) \le \|w^1 - w\|^2 - \|w_{T+1} - w\|^2 \le \|w\|^2$$

which completes the proof.