Stat 928: Statistical Learning Theory

Instructor: Sham Kakade

Lecture: 20

The Perceptron for Generalized Linear Models and Single Index Models

1 Learning Generalized Linear Models

Algorithm 1 GLM-tron

Input: function u(-)
w1 = 0;
fort=1,2,...do
J¢ = u(wy - x);
Wep1 = Wy + (Ye — Te) T3
end for

To analyze the performance of the algorithm, we show that if we run the algorithm for sufficiently many iterations,

one of the predictors h; obtained must be nearly-optimal, compared to the Bayes-optimal predictor.

Theorem 1.1. Suppose the sequence (x1,y1), (z2,Y2), . . . satisfy, for all t:

° ||a:t||2 <landy: €0,1]
e u: R — [0,1] is a known non-decreasing 1-Lipschitz function

o there exists a w such that y; = u(w - x¢)

Then GLM-tron satisfies:

" 2
(% = 50)* < [lwl]
t=1
The proof is based on the following lemma:

Lemma 1.2. At iteration t in GLM-tron,

2 2 .
lw = w]|” = wer = wll” > (ye = 5¢)?

Proof. We have
we — w])* = werr —wl|* = 20y — Ge) (w20 — we - x) — || (ye — Ge)ae]|*

Consider the first term above,

m

Z(yt —g)(w -z —wp - wy) = 2(u(w - xp) —u(w - xp))(w - T — we - T4)

2
m
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Using that u is non-decreasing and 1-Lipschitz, we have:
20u(w - z¢) — w(wy - ) (w - 2 — wy - 2¢) > 2u(w - 2;) — wlwe - 24))* = 2y — Go)> )

To justify this step, consider the case where w - x; > w; - x;. We then have (using that u is non-decreasing and
1-Lipschitz)
0<u(w-zy) —uw(w-ap) <|lw-zp —wy - x| = w24 —wy - Ty

The case where w - x; > wy - x; is identical.

For the second term in (4), we have

e — o)zl = (e —90) lzel® < (e — 90)? 3)

which completes the proof. O

Hence, we have that:
d 2
S (e~ §0)* < [t — o]~ flora - wf? < fu]?
t=1

which completes the proof.

2 Isotonic Regression and the PAV algorithm

The Pool Adjacent Violators (PAV) algorithm is finds the best monotonic one dimensional fit for (21, y1), (22, ¥2), - - - (Zm), Ym)>
where the z; and y;’s are real. Precisely,

m

. . . . 1
PAV((Zla y1)7 (223 y2)7 s (Zm.a ym)) = arg miy,ndecreasing functions f E Z(yl - f(zl))2
=1

If w is returned by PAV, then it satisfies the following calibration property for any y € R
> wi—-2)=0
is.tou(zi)=y

In other words, wherever the function u is constant (say when u is y) then this constant must be the average of all y;
where u(z;) = y). If this were not the case, note that we could slightly shift the function at y without breaking the
monotonicity property so that the square error is decreased.

With this observation the PAV algorithm can be implemented in O(m logm) time. The algorithm first sorts the z;’s.
Now the algorithm partitions the data into “pools”, where the function value is constant in each pool. Initially, each
point belongs to it’s own pools. If the function is non-monotonic, then any two pools violating the monotonicity
property can be merged (and the function value w is the average of the points within the pool).

3 (Batch) Learning of Single Linear Models

Now suppose that u is not known.

Here PAV is the isotonic regression algorithm (the “Pool Adjacent Violator” algorithm). It finds the best 1-dimensional
non-decreasing function (with respect to the square loss).



Algorithm 2 Isotron

Input: data ((z;,y;))™,
L.=0;

fort = 1,2,...d0
ug := PAV ((wy - 21,91)5 - -+, (Wt * Ty Ym))
For all 4, set ;. ; := us(wy - x;)

1 .
Wiyl = Wy + ooy Z;(yi — Ut,i)Ti
=
end for

Theorem 3.1. (Isotron algorithm for unknown u) Define the loss on the dataset as:
f/ut ’(Ut —lz’m: -—utwt ))2
) m v
Suppose the dataset data ((x;,y;))™ satisfy for all t:

o ||lzi||* < 1landy; €[0,1] fori=1,2,...m
e u:R — [0,1] is a non-decreasing 1-Lipschitz function.

o There exists a w such that y; = w(w - ;) fori =1,2,...m.

Then Isotron satisfies:

L(ug,wy) < [lw]?

M8

t=1

The following corollary shows how this results in a batch optimization algorithm.

Corollary 3.2. (Optimization) For any iteration T, we have:
- [
z_: L Ut, U}t S T

So there exists at < T such that: )
w
(ug, we) < HT”
(and this hypothesis can be found by explicitly computing f/(ut, wy) foreacht <T).

~

The following lemma is useful

Lemma 3.3. At iteration t in Isotron,

we — wl|* = Jwers — w]|* > L(ug, wy)

Proof. Let v be any inverse of u (this v may not be unique and we choose one arbitrarily).

‘We have

m

lwe —wl* = wepr —wl|? = o > (i = Gei)(w-w; —wy - x;) —

=1

— Ut,i)T;

“4)



Consider the first term above,

Z ytz W - Ty — W - %Z ytz w'xi ytz 72_: ytz ytz)_ xz)

m

By the same argument as in the proof of GLM-tron (using that « = v~!(-) is non-decreasing and 1-Lipschitz), we
have that for the first term above:

S e )= () = 2 D ) ) — uo(Ge)))
i=1 =1
= 25 (i)
:2L(ut,wt)

‘We also have that: .
Z — Jui)v(fri) =0 ©)

and

fz e <0 ©

Equation 5 follows from the calibration property. To see this, consider those ¢ for which g; ; = y (for some arbitrary
y). The sum over these ¢ is 0. Hence, the sum over all ¢ is 0. For Equation 6, recall that u(-) is the output of the
isotonic regression, e.g. u; = PAV ((wy - x1,91),- .., (Wt * Ty, Ym)). Note that u.(-) + aI(+) is also an increasing
function when o > 0 and I(+) is the identity function. Equation 6 is just the first derivative condition that for v > 0 —
note that u,(-) + ol(-) (for & > 0) does not have lower square loss than w.(-). In other words, if Equation 6 did not
hold, then note that this would imply that for a sufficiently small & > 0, the function u(-) + aI(-) would be a better
monotonic function for the data ((w; - ©1,¥1),- .., (Wt * Tm, Ym)), Which violates the optimality of PAV.

For the second term in (4), Jensen’s inequality implies

2

1 m A 1 m m R
EE(% ~ i) EZ —gra)eil” = Z i =) lll® < Lww) ()
which completes the proof. O
For the proof of the theorem, we have that (for all T'):
T
3 Lugwe) < |lw' —w||* = fwr = wlf* < [lw]?

t

which completes the proof.



