
Stat 928: Statistical Learning Theory Lecture: 21

Online Convex Programming and Gradient Descent

Instructor: Sham Kakade

1 Online Convex Programming

The online convex programming problem is a sequential paradigm where at each round the learner chooses decisions
from a convex feasible set D ⊂ Rd. In this problem, at each round t:

1. the learner chooses a decision wt ∈ D, where D is a convex subset of Rd.

2. nature chooses a convex cost function in ct : D → R.

3. the learner incurs the cost ct(wt), and the cost function ct(·) is revealed to the algorithm.

Crucially, the algorithm learns ct only after the decision wt is chosen. Hence at time t, the algorithm has knowledge
of the previous functions, {c1(·), . . . , ct−1(·)}. Importantly, no statistical assumptions on the sequence of convex
functions are made — they should be thought of as an arbitrary sequence unknown apriori to the algorithm.

If algorithm A uses the sequence of decisions
{w1, . . . , wT }

on the sequence
{c1, . . . , cT } ,

then A has regret, at time T in comparison to the best constant decision, defined as:

RT (A) =

T∑
t=1

ct(wt)− inf
w∈D

T∑
t=1

ct(w)

We are interested in algorithms with little regret.

1.1 Online Gradient Descent

The simplest algorithm to consider here is the gradient descent algorithm. There are two issues we must address. First,
we must ensure our decisions are always in the feasible set D. The second is that the gradient may not be defined.

To address, the later issue, we work with a subgradient. A subgradient ∇c(w) of a convex function c(·) at w satisfies,
for all w′ ∈ D

c(w′)− c(w) ≥ ∇c(w) · (w′ − w)

A subgradient always exists for a convex function, though it may not be unique.

Define the Online Gradient Descent algorithm (GD) with fixed learning rate η is as follows: at t = 1, select any
w1 ∈ D, and update the decision as follows

wt+1 = ΠD[wt − η∇ct(wt)]
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where ΠD[w] is the projection of w back into D, i.e. it is the closest point (under the L2 norm) in D to w. More
formally:

ΠD[w] ∈ arg minw′∈D||w − w′||2
Hence, wt+1 ∈ D.

Theorem 1.1. Assume that D is convex, closed, non-empty, and bounded. In particular, there exists a constant D2

such for all w,w′ ∈ D,
||w − w′||2 ≤ D2

Also, assume that for all times t, that
||∇ct(wt)||2 ≤ G2

If we set η =
D2

G2

√
1

T
, then for all sequences of convex functions {c1, . . . cT }

RT (GD) ≤ D2G2

√
T

Note that there is no explicit dimensionality dependence.

We now provide the proof. Throughout, let ∇t = ∇ct(wt). Let w∗ be a minimizer of
∑T

t ct(w) (which exists since
D is closed and convex). By convexity, we have

RT (A) =

T∑
t=1

(ct(wt)− ct(w∗)) ≤
T∑

t=1

∇t · (wt − w∗)

Now we appeal to the following Lemma.

Lemma 1.2. Let w∗ be an arbitrary point in D. The decisions of GD algorithm satisfy:

T∑
t=1

∇t · (wt − w∗) ≤
1

2η
D2

2 +
η

2
G2

2T

Proof. A fundamental property of projections into convex bodies is that for an arbitrary w′ ∈ Rd, we have for all
w ∈ D:

||ΠD[w′]− w||22 ≤ ||w′ − w||22
Using the notation that || · || refers to the L2 norm:

||wt − w∗||2 − ||wt+1 − w∗||2 = ||wt − w∗||2 − ||ΠD[wt − η∇t]− w∗||2

≥ ||wt − w∗||22 − ||wt − η∇t − w∗||d2
= 2η∇t · (wt − w∗)− η2||∇t||22

and so
∇t · (wt − w∗) ≤

1

2η
(||wt − w∗||2 − ||wt+1 − w∗||2) +

η

2
G2
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using the definition of G2. Summing over t,

T∑
t=1

∇t · (wt − w∗) ≤ 1

2η
(||w1 − w∗||2 − ||wT+1 − w∗||2) +

η

2
G2

2T

≤ 1

2η
D2

2 +
η

2
G2

2T

which completes the proof.
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