
Stat 928: Statistical Learning Theory Lecture: 22

Exponentiated Gradient Descent

Instructor: Sham Kakade

1 Exponentiated Gradient Descent

Now assume the decision space D is a d-dimensional simplex, i.e.

D = {w |wi ≥ 0 and ||w||1 = 1}

The Exponentiated Gradient Descent algorithm (EG) is defined as follows: at time t = 1, choose w1 as the center
point of this scaled simplex, namely w1,i =

1
d , and then use the update:

∀i ∈ [d], wt+1,i =
wt,i exp (−η[∇ct(wt)]i)

Zt
(1)

where
Zt =

∑
i

wt,i[∇ct(wt)]i .

Here, [·]i denotes the ith component of a vector. The division by Zt serves as a form of normalization, so that
wt+1 ∈ D, i.e. ||wt+1||1 = 1.

We now state the guarantee of EG.

Theorem 1.1. Assume that D is a simplex and assume that gradient is bounded as follows:

||∇ct(wt)||∞ ≤ G∞

where ||u||∞ = maxi |ui| is the L∞ norm. If η = 1
G∞

√
log d
T , the regret of EG at time T bounded as:

RT (EG) ≤ 2G∞
√
T log d

Now consider the decision space D to be a (scaled) d-dimensional simplex, i.e.

D = {w |wi ≥ 0 and ||w||1 = D1}

EG is modified as follows: at time t = 1, choose w1 as the center point of this scaled simplex, namely w1,i =
D1

d , and
then use the update:

wt+1,i =
wt,i exp (−η[∇ct(wt)]i)

Zt

where
Zt =

1

D1

∑
i

wt,i[∇ct(wt)]i .

Again, the division by Z serves as a form of normalization, so that wt+1 ∈ D, i.e. ||wt+1||1 = D1.

The guarantee is now:
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Theorem 1.2. Assume that D is a (scaled) simplex as defined above and assume that gradient is bounded as follows:

||∇ct(wt)||∞ ≤ G∞

where ||u||∞ = maxi |ui| is the L∞ norm. If η = 1
D1G∞

√
log d
T , the regret of EG at time T bounded as:

RT (EG) ≤ 2D1G∞
√
T log d

Note that the statement uses the dual norms L1/L∞ rather than L2/L2. Hence, when D1G∞ is O(p) (where p is the
number of “relevant” dimensions), this bound is only logarithmic in the total number of dimensions.

We now provide the proof using the following Lemma. The theorem follows using the learning rate specified and by
verifying that the technical condition on the learning rate (η ≤ 1

G∞
) is satisfied.

Lemma 1.3. Let w∗ be an arbitrary point in D, where D is the simplex. If η ≤ 1
G∞

, then

T∑
t=1

∇t · (wt − w∗) ≤
KL(w∗||w1)

η
+ ηG2

∞T .

Proof. We can interpret w ∈ D as a probability distribution. First, it is straightforward to prove that exp(x) ≤
1 + x+ x2, if x ≤ 1. Let us examine how the KL-distance changes with respect to w∗.

KL(w∗||wt)−KL(w∗||wt+1) =
∑
i

w∗i log
wt+1,i

wt,i

=
∑
i

w∗i (−η∇t,i − log(Z))

= −ηw∗ · ∇t − log(Z)

Now let us use that exp(x) ≤ 1 + x+ x2 for x ≤ 1 to upper bound log(Z). Note that η∇t,i ≤ 1 since η ≤ 1
G∞

.

log(Z) = log
∑
i

wt,i exp(−η∇t,i)

≤ log
∑
i

wt,i(1− η∇t,i + η2∇2
t,i)

= log(1− ηwt · ∇t + η2
∑
i

wt,i∇2
t,i)

≤ log(1− ηwt · ∇t + η2G2
∞)

≤ −ηwt · ∇t + η2G2
∞

Combining these two we have:

KL(w∗||wt)−KL(w∗||wt+1) ≥ −ηw∗ · ∇t + ηwt · ∇t − η2G2
∞

and so
∇t · (wt − w∗) ≤

1

η
(KL(w∗||wt)−KL(w∗||wt+1)) + ηG2

∞

Summing we have:

T∑
t=1

∇t · (wt − w∗) ≤
1

η
(KL(w∗||w1)−KL(w∗||wT+1)) + ηG2

∞T
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For the uniform distribution KL(w∗||w1) ≤ log d, which leads to:

T∑
t=1

∇t · (wt − w∗) ≤
KL(w∗||w1)

η
+ ηG2

∞T

For the case where D is a scaled simplex, we can complete the proof by rescaling by D1.

2 Applications of Online Convex Programming

2.1 Optimization

Consider the case where we wish to optimize a convex function c(·) over a convex domain D. Let us run the GD
algorithm, where at each time step:

ct = c

Hence, we have the guarantee that:

RT (GD) =

T∑
t=1

c(wt)− inf
w∈D

T∑
t=1

c(w) ≤ D2G2

√
T

where G2 is a bound on the L2 norm of the derivative of c(·).

This implies that:
1

T

T∑
t=1

c(wt)− c(w∗) ≤
D2G2√

T

And by convexity we have:

c

(
1

T

T∑
t=1

wt

)
≤ 1

T

T∑
t=1

c(wt)

so:

c

(
1

T

T∑
t=1

wt

)
− c(w∗) ≤ D2G2√

T

Hence, as an optimization procedure, it is sufficient to run this algorithm for O( 1
ε2 ) steps to get an ε near optimal

solution.

2.2 Prediction with Expert Advice

In the ‘experts’ setting, our Decision space is [k]. At every round, each of the k experts provides us with a ‘suggestion’
and we choose to follow one expert. If we follow expert i at time t, we suffer loss lt,i. As before, we do not know the
loss function in advance, but once we choose our expert, we learn the full loss vector lt.

Without a randomized strategy, it is straightforward to show that the regret must be ω(T ) for some problem.

With randomization, our decision space is now a probability distribution over [k].

We can view our expected loss as:
ct(w) = w · lt

3



The EG algorithm, referred to as ‘Hedge’ for this case is: at time t = 1, choose w1 as the uniform distribution, and
then use the update:

wt+1 =
wt ⊗ exp (−ηlt)

Z
where Z = wt · exp(−ηlt)

From the guarantees of EG, we have that:

Corollary 2.1. Assume that the losses are bounded in [0, 1], i.e. lt,i ∈ [0, 1]. Let w∗ be an arbitrary distribution. If
η ≤ 1, then the expected performance of hedge is bounded as follows:

T∑
t=1

E [lt,it ]−
T∑
t=1

w∗ · lt ≤
KL(w∗||w1)

η
+ ηT .

where it is random variable for the decision chosen at time t.

Hence, if we set the learning rate as η = 1√
log dT

, we have that:

T∑
t=1

E [lt,it ]− inf
i

T∑
t=1

· lt,i ≤ 2
√
T log d .

2.3 Lower Bounds

We won’t formalize a lower bound. However, note that if there is the experts loss are coming from some distribution
`t ∼ P , where the distribution P does not change over time, then there are distributions where it takes

√
T log d just

to identify the best expert.
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