
Stat 928: Statistical Learning Theory Lecture: 24

Growth Functions and the VC dimension

Instructor: Sham Kakade

1 Growth function

Consider the case Y = {±1} (classification). Let φ be the 0-1 loss function and F be a class of ±1-valued functions.
We can relate the Rademacher average of φF to that of F as follows.

Recall the following definitions:

Rm(φF ) = E

[
sup
f∈F

1

m

m∑
i=1

εiφ(f(Xi), Yi)

]
where the expectation is with respect to the εi’s, Xi’s and Yi’s. The conditional Rademacher average is:

Rm(φF |Xm
1 ) = E

[
sup
f∈F

1

m

m∑
i=1

εiφ(f(Xi), Yi)

∣∣∣∣∣Xm
1

]
where the expectation is with respect to the εi’s and Yi’s. Note that:

Rm(φF ) = E[Rm(φF |Xm
1 )]

where the expectation is with respect to the Xi’s.

Lemma 1.1. Suppose F ⊆ {±1}X and let φ(y′, y) = 1 [y′ 6= y] be the 0-1 loss function. Then we have,

Rm(φF ) =
1

2
Rm(F|Xm

1 ) .

Proof. Note that we can write φ(y′, y) as (1− yy′)/2. Then we have,

Rm(φF |Xm
1 , Y

m
1 ) = E

[
sup
f∈F

1

m

m∑
i=1

εi
1− Yif(Xi)

2

∣∣∣∣∣Xm
1 , Y

m
1

]

=
1

2
E

[
sup
f∈F

1

m

m∑
i=1

(−εiYi)f(Xi)

∣∣∣∣∣Xm
1 , Y

m
1

]
(1)

=
1

2
E

[
sup
f∈F

1

m

m∑
i=1

εif(Xi)

∣∣∣∣∣Xm
1

]
(2)

=
1

2
Rm(F|Xm

1 ) .

Equation (1) follows because E [εi|Xm
1 , Y

m
1 ] = 0. Equation (2) follows because εiYi’s jointly have the same distribu-

tion as εi’s. The proof follows from:

Rm(φF |Xm
1 ) = E[Rm(φF |Xm

1 , Y
m
1 )] = E[

1

2
Rm(F|Xm

1 )] =
1

2
Rm(F|Xm

1 )

where the expectation is with respect to the Yi’s.
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Note that the Rademacher average of the class F on the set X1, . . . , Xm can also be written as

Rm(F|Xm
1

) = E

[
sup

a∈F|Xm
1

1

m

m∑
i=1

εiai

]
,

where F|Xm
1

is the function class F restricted to the set X1, . . . , Xm. That is,

F|Xm
1

:= {((f(X1), . . . , f(Xm)) | f ∈ F} .

Note that F|Xm
1

is finite and
|F|Xm

1
| ≤ min{|F|, 2m} .

Thus we can define the growth function as

ΠF (m) := max
xm
1 ∈Xm

|F|xm
1
| .

2 Rademacher Averages and Growth Function

Theorem 2.1. Let F be a class of ±1-valued functions. Then we have,

Rm(F) ≤
√

2 ln ΠF (m)

m
.

Proof. We have,

Rm(F)E[Rm(F|Xm
1 )]

= E

[
E

[
sup

a∈F|Xm
1

1

m

m∑
i=1

εiai

∣∣∣∣∣Xm
1

]]

≤ E

√m
√

2 ln |F|Xm
1
|

m


≤ E

[
√
m

√
2 ln ΠF (m)

m

]

=

√
2 ln ΠF (m)

m

Since f(xi) ∈ {±1}, any a ∈ F|Xm
1

has ‖a‖ =
√
m. The first inequality above therefore follows from Massart’s

finite class lemma. The second inequality follows from the definition of the growth function ΠF (m).

Note that plugging in the trivial bound ΠF (m) ≤ 2m does not give us any interesting bound. This is quite reasonable
since this bound would hold for any function class no matter how complicated it is. To measure the complexity of
F , let us look at the first natural number such that ΠF (m) falls below 2m. This brings us to the definition of the
Vapnik-Chervonenkis dimension.
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X F VCdim(F)
R2 convex polygons ∞
R2 axis-aligned rectangles 4
R2 convex polygons with d vertices 2d+ 1
Rd halfspaces d+ 1

3 Vapnik-Chervonenkis Dimension

The Vapnik-Chervonenkis dimension (or simply the VC-dimension) of a function class F ⊆ {±1}X is defined as

VCdim(F) := max {m > 0 |ΠF (m) = 2m} .

An equivalent definition is that VCdim(F) is the size of the largest set shattered by F . A set {x1, . . . , xm} is said to
be shattered by F if for any labelling~b = (b1, . . . , bm) ∈ {±1}m, there is a function f ∈ F such that

(f(x1), . . . , f(xm)) = (b1, . . . , bm) .

Note that a function f ∈ {±}X can de identified with the subset of X on which it is equal to +1. So, we often talk
about the VC-dimension of a collection of subsets of X . The table below gives the VC-dimensions for a few examples.

4 Growth Function and VC Dimension

Suppose VCdim(F) = d. Then for all m ≤ d, ΠF (m) = 2m. The lemma below, due to Sauer, implies that for
m > d, ΠF (m) = O(md), a polynomial rate of growth. This result is remarkable for it implies that the growth
function exhibits just two kinds of behavior. If VCdim(F) = ∞ then ΠF grows exponentially with m. On the other
hand, if VCdim(F) = d <∞ then the growth function is O(md).

Sauer’s Lemma. Let F be such that VCdim(F) ≤ d. Then, we have

ΠF (m) ≤
d∑

i=0

(
m

i

)
.

Proof. We prove this by induction on m+ d. For m = d = 1, the above inequality holds as both sides are equal to 2.
Assume that it holds for m− 1 and d and for m− 1 and d− 1. We will prove it for m and d. Define the function,

h(m, d) :=

d∑
i=0

(
m

i

)
so that our induction hypothesis is: for F with VCdim(F) ≤ d, ΠF (m) ≤ h(m, d). Since(

m

i

)
=

(
m− 1

i

)
+

(
m− 1

i− 1

)
,

is is easy to verify that h satisfies the recurrence

h(m, d) = h(m− 1, d) + h(m− 1, d− 1) .

Fix a class F with VCdim(F) = d and a set X1 = {x1, . . . , xm} ⊆ X . Let F1 = F|X1
and X2 = {x2, . . . , xm} and

define the function classes,
F1 := F|X1
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F2 := F|X2

F3 := {f|X2
| f ∈ F & ∃f ′ ∈ F s.t.

∀x ∈ X2, f
′(x) = f(x) & f ′(x1) = −f(x1)} .

Note that VCdim(F ′) ≤ VCdim(F) ≤ d and we wish to bound |F1|. By the definitions above, we have

|F1| = |F2|+ |F3| .

It is easy to see that VCdim(F2) ≤ d. Also, VCdim(F3) ≤ d− 1 because if F3 shatters a set, we can always add x1
to it to get a set that is shattered by F1. By induction hypothesis, |F2| ≤ h(m − 1, d) and |F3| ≤ h(m − 1, d − 1).
Thus, we have

|F|xm
1
| = |F1| ≤ h(m− 1, d) + h(m− 1, d− 1) = h(m, d) .

Since x1, . . . , xm were arbitrary, we have

ΠF (m) = sup
xm
1 ∈Xm

|F|xm
1
| ≤ h(m, d) .

and the induction step is complete.

Corollary 4.1. Let F be such that VCdim(F) ≤ d. Then, we have, for m ≥ d,

ΠF (m) ≤
(me
d

)d
.

Proof. Since n ≥ d, we have

d∑
i=0

(
m

i

)
≤
(m
d

)d d∑
i=0

(
m

i

)(
d

m

)i

≤
(m
d

)d m∑
i=0

(
m

i

)(
d

m

)i

≤
(m
d

)d(
1 +

d

m

)m

≤
(m
d

)d
ed .

5 VC Dimension of halfspaces

Here we prove only the last claim: the VC-dimension of halfspaces in Rd is d+ 1.

Theorem 5.1. Let X = Rd. Define the set of ±1-valued functions associated with halfspaces,

F =
{
x 7→ sgn (w · x− θ)

∣∣w ∈ Rd, θ ∈ R
}
.

Then, VCdim(F) = d+ 1.
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Proof. We have to prove two inequalities

VCdim(F) ≥ d+ 1 , (3)
VCdim(F) ≤ d+ 1 . (4)

To prove the first inequality, we need to exhibit a particular set of size d+ 1 that is shattered by F . Proving the second
inequality is a bit more tricky: we need to show that for all sets of size d+ 2, there is labelling that cannot be realized
using halfspaces.

Let us first prove (3). Consider the set X = {0, e1, . . . , ed} which consists of the origin along with the vectors in the
standard basis of Rd. Given a labelling b0, . . . , bd of these points, set

θ = −b0 ,

wi = θ + bi , i ∈ [d] .

With these definitions, it immediately follows that w · 0 − θ = b0 and for all i ∈ [d], w · ei − θ = bi. Thus, X is
shattered by F . Since, |X| = d+ 1, we have proved (3).

Before we prove (4), we need the following result from convex geometry.

Radon’s Lemma. Let X ⊂ Rd be a set of size d + 2. Then there exist two disjoint subsets X1, X2 of X such that
conv(X1) ∩ conv(X2) 6= ∅. Here conv(X) denotes the convex hull of X .

Proof. Let X = {x1, . . . , xd+2}. Consider the following system of d+ 1 equations in the variables λ1, . . . , λd+2,

(
x1 x2 . . . xd+2

1 1 . . . 1

)
λ1
λ2
...

λd+2

 = 0 . (5)

Since, there are more variables than equations, there is a non-trivial solution λ∗ 6= 0. Define the set of indices,

P = {i |λ∗i > 0} ,

N =
{
j
∣∣λ∗j < 0

}
.

Since λ∗ 6= 0, both P and N and non-empty and∑
i∈P

λ∗i =
∑
j∈N

(−λ∗j ) 6= 0 .

Moreover, since λ∗ satisfies
∑d+2

i=1 λ
∗
i xi = 0, we have∑

i∈P
λ∗i xi =

∑
j∈N

(−λ∗j )xj .

Defining X1 = {xi ∈ X | i ∈ P} and X2 = {xi ∈ X | i ∈ N}, we see that the point∑
i∈P λ

∗
i xi∑

i∈P λ
∗
i

=

∑
j∈N (−λ∗j )xj∑
j∈N (−λ∗j

lies both in conv(X1) as well as conv(X2).
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Given Radon’s lemma, the proof of (3) is quite easy. We have to show that given a set X ∈ Rd of size d+ 2, there is a
labelling that cannot be realized using halfspaces. Obtain disjoint subsets X1, X2 of X whose existence is guaranteed
by Radon’s lemma. Now consider a labelling in which all the points inX1 are labelled +1 and those inX2 are labelled
−1. We claim that such a labelling cannot be realized using a halfspace. Suppose there is such a halfspace H . Note
that if a halfspace assigns a particular label to a set of points, then every point in their convex hull is also assigned the
same label. Thus every point in conv(X1) is labelled +1 by H while every point in conv(X2) is labelled −1. But
conv(X1) ∩ conv(X2) 6= ∅ giving us a contradiction.

We often work with ±1-valued functions obtained by thresholding real valued functions at 0. If these real valued
functions come from a finite dimensional vector space, the next result gives an upper bound on the VC dimension.

Theorem 5.2. Let G be a finite dimensional vector space of functions on Rd. Define,

F = {x 7→ sgn(g(x)) | g ∈ G} .

If the dimension of G is k then VCdim(F) ≤ k.

Proof. Fix an arbitrary set of k+ 1 points x1, . . . , xk+1. We show that this set cannot be shattered by F . Consider the
linear transformation T : G → Rk+1 defined as

T (g) = (g(x1), . . . , g(xk+1) .

The dimension of the image of G under T is at most k. Thus, there exists a non-zero vector λ ∈ Rk+1 that is orthogonal
to it. That is, for all g ∈ G,

k+1∑
i=1

λig(xi) = 0 . (6)

At least one of the sets,
P := {i |λi > 0} ,

N := {j |λj < 0} ,

is non-empty. Without loss of generality assume it is P . Consider a labelling of x1, . . . , xk+1 that assigns the label
+1 to all xi such that i ∈ P and −1 to the rest. If this labelling is realized by a function in F then there exists g0 ∈ G
such that ∑

i∈P
λig0(xi) > 0 ,

∑
i∈N

λig0(xi) ≥ 0 .

But this contradicts (6). Therefore x1, . . . , xk+1 cannot be shattered by F .
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