Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods Lecture: 23
Matrix Concentration

Instructor: Sham Kakade

1. Hoeffding review
2. say we have a random matrix

3. two natural norms

1 Hoeffding Bound

Let X1,... X, beii.d. real valued random variables bounded in [0, M], almost surely. Then with probability greater
than 1 — 6,

[ X LX) < = VIR0

2 Matrix Concentration

2.1 Norms

Recall that the Frobenius norm of a matrix, || M||r , is the square root of the sum of squares of the elements of the
matrix. The spectral norm of a matrix, || M]|2 is it’s maximal singular value.
Note that:
[M|l2 < [[M]lr

2.2 Concentration

Let X € R™*™ be a random matrix. In many settings, we are interested in the behavior of either:

1 n
- ;Xi - E[X]

where each X is sampled i.i.d. from some distribution. Here,
value) and || - || denotes the Frobenius norm.
The following theorem provides a high probability bound on these quantities.

Theorem 2.1. Assume that X; € R qre sampled i.i.d. Let d = min{dy,ds}.

1 Zn:Xi ~ E[X]
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- ||2 denotes the spectral norm (the largest singular

e (Frobenius Norm) Suppose || X ||z < M almost surely. Then with probability greater than 1 — 0,

1 — 6M 1
- ;:1 X; —E[X]|| < 7 <l—|—\/log5>

e (Spectral Norm) Suppose || X || < M almost surely. Then with probability greater than 1 — 6,

1 — 6M 1
=N X, —ElX]| < == [ Viogd log = | .
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2.3 Examples

Two special case of interest, are when:

1. The samples X; are of the form zz | where z is a vector. Here if the Euclidean norm ||z||o < 1 then X;||r < 1.

2. Another case may be where X; only has one entry which is 1. For example, we are estimating a probability
matrix Pr(x; = 4,29 = j), and each X} is a sample (where the ¢, j entry being one corresponds to the event 4, j
occurring). Again, the Frobenius norm is bounded by one.

Instead, it might be the case that random matrix X; has large Frobenius norm. Here, we might hope that it’s
spectral norm is small, in which case the latter concentration result is more appropriate.

3 Accuracy of Projections

Let us assume that E[X] is “low rank”, say rank k. The question we ask is how accurate our projections are onto the
left (or right) singular subspace using the sample matrix X = LS . X;. Let the SVDs be E[X] = UDV' " and
R =0UDV". Let )

Let U correspond to the top k singular vectors (so it is of size dy X k). Let U, be the matrix whose columns are
orthonormal and perpendicular to U.

Let A\ be the smallest (non-zero) singular value of E[X]. Following from Stewart and Sun (theorem 4.1 and
theorem 4.4, pages 260 and 264), we have that:

- - X -E[X
|| sin(angles between U and U)||r = |[U[ U||r < H/\J
k
and R
~ ~ X -E[X
| sin(angles between U and U)||2 = ||[U] U||2 < ”)\J
k



