Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods Lecture: 7
Dimensionality Reduction and Learning: Margins and Classification

Instructor: Sham Kakade

1 Preserving Inner Products

As a simple corollary, we see that inner products are preserved under random projection.
Corollary 1.1. Let u,v € R and that ||u|| < 1 and ||v| < 1. Let f = ﬁAx where A is a k X d matrix, where each
entry is sampled i.i.d from a Gaussian N (0, 1) (or from U(—1,1)). Then,

Pr(ju-v — f(u) - f(v)] > €) < de™ (/4

Proof. Applying Theorem ?? to the vectors v + v and u — v, we have that with probability at least 1 — de=(—k/4,
A=outol>< [fwt+o)lP <@ +e)lutol
A=ollu—vl* < [flu=v)* <@+e)lu—v|
Now we have:
Af(u)- f(o) = |If(u+o)l* = [If(u—2v)|?
> (1=9futol> -1 +e)u—vl
= du-v—2¢(]Jul* + ||v]*)
> du-v—4e
The proof of the other direction is analogous. O

2 Margin Based Classification

For now, assume we have a distribution over X € X C R?and Y € {1, 1}. Assume that there exists a weight vector
B such that sign( - X) =Y, with probability one. Hence, the distribution is separable. Furthermore, let us scale the
distribution so that it is separable at margin 1, i.e.:

Y(6-X)>1

What learning algorithm should we use? The The VC dimension of halfspaces is €2(D), so naively minimizing the 0/1
loss in D dimensions may not be lead to good generalization properties (and it’s not clear how to do this anyways).
Instead, maximizing the margin can be shown to provide good generalization properties — however computationally,
this may be a little cumbersome (even though it is polytime).

Let us say say we have a training set 7' = {(X;,Y;) };.

Often, what is done, is that the perceptron algorithm is run on the training set. The perceptron algorithm run on
any sequence of points {(X;,Y;)} C T sampled from this distribution makes at most:

M < | X817

mistakes (regardless of the length of the sequence) where ||X'|| = maxxcx || X||. Hence, if we repeatedly cycle
through the dataset, then eventually we will no longer make mistakes.

But what about generalization? Naively using this perceptron predictor does not necessarily lead to good general-
ization behavior since the VC dimension of halfspaces is £2(D) (and no bound is known for this convergent point of
the perceptron).



2.1 Random Projections and Margin Preservation

Now let us project 3 and X by P = + A, where A € RF*? and each entry in A is sample independently from N (0, 1).
Is separability preserved under our training set?

Lemma 2.1. Assume || X|| < 1. If k = O(||8||?||X||* log %), then with probability greater than 1 — § for all i
1
Pp-PX; > 3

and
1 1
§||Xi||2 < |1PX]1? < 2/1X: %, §||5||2 < |IPBII” < 2|18]

Proof. Choose € = m and apply the inner product preserving lemma, which implies that for any particular X,
and 3, that |P3 - PX,; — 8- X;| > % s0 that:

1
YiPB-PXi —Yif-Xi| < 5

For O(n?) events, we use O(J/n?) so the total error probability is d. The final claim follows from the norm preserving
lemma. =
2.2 Generalization

If we run the perceptron algorithm, on the training set, then the total number of mistakes made is:
M, < O(|I81711X1*)

Note that this implies that after O(||3||?||X||?) iteration the perceptron will stabilize to a constant solution, which has
ZETO eITOr.

For generalization, we are now working with a space of dimension O(||3|? log %).

There are other methods to obtain generalization but the important point here is that under the margin assumption,
we are essentially working in a finite dimensional space (and this subspace can be determine non-adaptively from the
labels {Y; }).

2.3 Random Projections and Maximum Likelihood Estimation

First note that if we projectto k = O(IOE#) dimensions then (using P = ﬁA), we have that for all ¢:
|PB-PX; = B- X < |IBlllI Xille

Let us define the loss using only X P T as:
1 T2
Lp(w) = ﬁ]EYHY — XP'w|

Let 3p be the best fit of Y with X P, i.e.
Bp = argmin Lp(w)
and let 3p be the MLE fit of ¥ with X PT (so A = 0). Now by the previous corollary, then:

Ev[Le(3p)] ~ Lr(8p) = Ev[|IXPTBp — XPTgp| < &



Also note that:

Lp(Bp) < Lp(PpB)
—E[|Y — XPT Pg|?]

1 1
= —E[|Y - XB|I’] + ~lIX5 - XP'Pp|?

— L(B) + % 5P PXi X0

— 118II*( Z 1X::11%)

=L(B) - [18]* IIEllnrace6

Theorem 2.2. (Risk Bound after Random Projection) Assuming Var(Y;) < 1, and that P is € inner product preserving
fork = (log") then:

20 log n

Ey||XPT8p — XB|° = Ey[Lr(6p)] = L(B) < = + I1BIP1E]Fucee”

k
n ||B|| ||E||trace6

Hence, choosing €2 = O(,/ nl\ﬁ\llo\lg\lmr ), implies that k = O(||B]|\/ |2 racen log ) and:

3 logn 2 b race
JEy||XPTﬂp—X5||2§O<\/ g ”\B/%” s >

Proof. From above we have that:

L(/B) > LP(/BP) - H/B||2||E||trace€2

so that:

Ey[Lp(Bp)] = L(B) < Ey[Lp(Bp)] = Lr(Bp) + 18I Ellucee® = Ev I X PTBp — XPTBp|P] + 18121 luacee

and we have bounded the risk in the last terms as % O

This matches the risk bound up to log factors. Also, our algorithm is simply an MLE estimate in & = O(|| 8|/ || £ ||irace log 1)
dimensions. Note that the number of dimensions we choose is growing as O(y/n).



