
Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods Lecture: 8

Dimensionality Reduction and Learning: Random Features and Bochner’s Thm

Instructor: Sham Kakade

1 Random Projections of Common Kernels
Let us say we have a Kernel K(x, y), which represent an inner product between x and y. When can we find random
φw(x) and φw(y) such that:

Ew[φw(x)φw(y)] = K(x, y)

and such that these have the concentration properties such that if we take many projections, then the average inner
product will converge rapidly to K(x, y) (so that we have an analogue of the inner product preserving lemma). For
kernels of the form K(x− y), Bochner’s theorem provides a form of φw(x) and p(w).

1.1 Bochner’s theorem and shift invariant kernels
First, let us provide some background on Fourier Series. Given a positive finite measure µ on the real line R (i.e. if µ
integrates to 1 then it would be a density), the Fourier transform Q(t) of µ is the continuous function:

Q(t) =

∫
R
e−itxdµ(x)

Clearly, the function e−itx is continuous and periodic. Also, Q is continuous since for a fixed x, and the function Q is
a positive definite function. In particular, the kernel K(x, y) := Q(y − x) is positive definite, which can be checked
via a direct calculation.

Bochner’s theorem says the converse is true:

Theorem 1.1. (Bochner) Every positive definite function Q is the Fourier transform of a positive finite Borel measure.
This implies that for any shift invariant kernel, K(x− y), we have that there exists a positive measure µ s.t.

K(x− y) =

∫
R
e−iw(x−y)dµ(w)

and the measure p = µ/
∫
dµ(w) is a probability measure.

To see the implications of this, take a kernel K(x − y) and it’s corresponding measure µ(w) under Bochner’s
theorem. Let α =

∫
dµ(w) and let p = µ/α. Now consider independently sampling w1, w2, . . . wk ∼ p. Consider the

random projection vector of x to be:

φ(x) =

√
α

k
(e−iw1x, . . . e−iwkx)

Note that since
Ew∼p[αe−iwxe−iwy] = K(x− y)

we have that:
φ(x) · φ(y) =

α

k

∑
i

e−iwi(x−y) → K(x− y)
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for large k. We can clearly ignore the imaginary components (as these have expectation 0), so it suffices to consider
the projection vector:

ψ(x) =
α√
k

(cos(w1 · x), sin(w1 · x), . . . cos(wk · x), sin(wk · x))

which also is correct in expectation.

1.1.1 Example: Radial Basis Kernel

Consider the radial basis kernel:
K(x− y) = e−

‖x−y‖2
2

It is easy to see that if choose p to be the gaussian measure with variance and µ =, then:∫
e−iw·(x−y)

1

(2π)d/2
e−‖w‖

2/2dw = e−
‖x−y‖2

2 = K(x− y)

Hence the sampling distribution for w is Gaussian. If the bandwidth of the RBF kernel is not 1 then we scale the
variance of the Gaussians.

For other scale invariant Kernels, there are different corresponding sampling measures p. However, we always use
the fourier features.

1.1.2 High Probability Inner Product Preservation

Recall that to prove a risk bound using random features, the key was the inner product preserving lemma, which
characterizes how fast the inner products in the projected space converge to the truth as a function of k.

We can do this here as well:

Lemma 1.2. Let x, y ∈ Rd and let K(x − y) be a (shift invariant) kernel. If k = α2

ε2 log 1
δ , and if φ is created using

independently sampled w1, w2, . . . wk ∼ p (as discussed above), then with probability greater than 1− δ:

|φ(x) · φ(y)−K(x− y)| ≤ ε

where φ(·) uses the cos and sin features.

Proof. Note that the cos and sin functions are bounded by 1. Now we can apply Hoeffdings directly to the random
variables

α

k

∑
i

cos(wi · x) cos(wi · y),
α

k

∑
i

sin(wi · x) sin(wi · y)

to show that these are ε close to their mean with the k chosen above. This proves the result.

1.1.3 Polynomial Kernels

Now say our we have a polynomial Kernel degree l of the form:

K(x, y) =

l∑
i=1

ci(x · y)l

Consider randomly sampling a set of projections W = {wi,j : 1 ≤ i ≤ l, 1 ≤ j ≤ i} of size l(l − 1)/2, where each
wi,j is such that E[(w · x)(w · y)] = x · y (our Gaussian projections suffice here). Now consider the random projetion
(down to one dimension) of K(x, .):

φW (x) =

l∑
i=1

√
ciΠ

l
j=1wi,j · x
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One can verify that:
EW [φW (x)φW (y)] = K(x, y)

to see this, note

EW [(Πl
j=1wi,j · x)(Πl

j′=1wi,j′ · y)] = EW [Πl
j=1(wi,j · x)(wi,j · y)] = (x · y)l

where second step is due to independence. Similarly, for i 6= i′,

EW [(Πl
j=1wi,j · x)(Πl

j′=1wi′,j′ · y)] = 0

again by independence.
Again consider independently sampling W1,W2, . . .Wk (note each Wi is O(l2) random vectors). Consider the

random projection vector of x to be:

1√
k

(φW1
(x), φW2

(x), . . . φWk
(x))

Concentration properties (for the an innerproduct preserving lemma) should be possible to prove as well (again using
tail properties of Gaussians).

This random projection is not as convenient to use unless l is small.
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