Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods

Spectral methods for learning HMMs

Lecture: 22

Instructor: Sham Kakade

1 The Transformed Representation

Assume M is invertible. For $x = 1, \dots, d$, define

$$\widetilde{A}_x = M A_x M^{-1}$$

Also, as before, define $\widetilde{h}_t = M h_t$ and

$$\widetilde{g}_t = \mathbb{E}[\widetilde{h}_t | x_{< t}] = M\widetilde{g}_t$$

We now have the following updates.

Lemma 1.1. In this representation, the HMM update rules are:

$$\widetilde{g}_{1} = M\pi_{1}$$

$$\widetilde{g}_{\infty}^{\top} = 1_{m}^{\top} M^{-1}$$

$$\widetilde{g}_{t+1} = \frac{\widetilde{A}_{x_{t}} \widetilde{g}_{t}}{\widetilde{g}_{\infty}^{\top} \widetilde{A}_{x_{t}} \widetilde{g}_{t}}$$

$$\Pr[x_{t+1} | x_{1}, \dots, x_{t}] = \widetilde{g}_{\infty}^{\top} \widetilde{A}_{x_{t+1}} g_{t+1}$$

We also have that:

$$\Pr[x_1,\ldots,x_t] = \widetilde{g}_{\infty}^{\top} \widetilde{A}_{x_t} \ldots \widetilde{A}_{x_1} \widetilde{g}_1$$

Proof. The equations follow directly from the definitions and our HMM representation. The last equation (in the first claim) follows from UM = O. The second claim also follows from our previous expression (in the last lecture) of the joint probability $\Pr[x_1, \ldots, x_t]$.

2 Learning

Assumption 1. Assume that T and O are full rank. Also, assume that $\pi_1 > 0$.

Define the following matrices:

$$\begin{split} &[P_1]_i &= & \Pr(x_1 = i) \\ &[P_{2,1}]_{i,j} &= & \Pr(x_2 = i, x_1 = j) \\ &[P_{3,x,1}]_{i,j} &= & \Pr(x_3 = i, x_2 = x, x_1 = j) \end{split}$$

Theorem 2.1. Let the "thin" SVD of the cross correlation matrix at some timestep τ be $E[x_{\tau+1}x_{\tau}^{\top}] = UDV^{\top}$. Let $M = U^{\top}O$. Then M is invertible. Furthermore,

$$\begin{aligned} \widetilde{g}_1 &=& = U^\top P_1 \\ \widetilde{g}_\infty &=& \left(P_{2,1}^\top U \right)^+ P_1 \\ \widetilde{A}_x &=& \left(U^\top P_{3,x,1} \right) \left(U^\top P_{2,1} \right)^+ \quad \forall x \in [d] \,. \end{aligned}$$

Proof. For \widetilde{g}_1 , we have that:

$$\widetilde{g}_1 = M\mathbb{E}[h_1] = U^{\top}E[x_1] = U^{\top}P_1$$

Now let us prove the equation for \widetilde{A}_x . Define:

$$[X]_{i,j} = \Pr(h_2 = i, x_1 = j)$$

and define:

$$[Y_x]_{i,j} = \Pr(h_3 = i, x_2 = x, x_1 = j)$$

We have that:

$$[Y_x]_{\cdot,j} = A_x[X]_{\cdot,j}$$

Hence,

$$Y_x = A_x X$$

and so:

$$U^{\top}(OY_x) = U^{\top}OA_xM^{-1}MX = \widetilde{A}_xU^{\top}(OX)$$

This and by definition of the P's,

$$U^{\top} P_{3,x,1} = \widetilde{A}_x U^{\top} P_{2,1}$$

which proves the result (using the rank conditions to argue that $U^{\top}P_{2,1}$ is rank k). For \widetilde{g}_{∞} , first note that:

$$\mathbf{1}^{\top}X = P_1^{\top}$$

and so:

$$1^{\top} M^{-1} U^{\top} O X = P_1^{\top}$$

Thus:

$$1^{\top} M^{-1} U^{\top} P_{2,1} = P_1^{\top}$$

which proves the result.

3 General observation events

We can consider arbitrary past observation events, in vector representation denoted by $X_{t,p}$ (which an events vector determined by $x_{t-1}, x_{t-2}, \ldots x_{\infty}$), as opposed to just singleton observations x_1 ; and arbitrary future observation events in vector representation $X_{t,f}$ (an events vector determined by x_t, x_{t+1}, \ldots) as opposed to just singleton observations. Let the set of some past events be $\{1, \ldots, m_p\}$, which is represented as an m_p -dimensional vector; and let the set of some future events be $\{1, \ldots, m_f\}$, which is represented as an m_f -dimensional vector.

Let us assume that $E[h_1]$ is the stationary distribution (and that time goes back to $-\infty$).. Define the event matrix $\widetilde{O}^p \in \mathbb{R}^{m_p \times K}$ by

$$\widetilde{O}_{\cdot,j}^p = \mathbb{E}\left[X_{t,p}|h_t=j\right].$$

which is not time varying as we have assumed the chain starts at the stationary distribution. Similarly, define $\widetilde{O}^f \in \mathbb{R}^{m_f \times K}$ by

$$\widetilde{O}_{\cdot,j}^f = \mathbb{E}\left[X_{t,f}|h_t=j\right].$$

which is again not time varying.

Define the matrix $P_{2,1} \in \mathbb{R}^{m_f \times m_p}$ by

$$\widetilde{P}_{2,1} = \mathbb{E} \ X_{2,f} X_{1,p}^{\top}.$$

Then

$$\widetilde{P}_{2,1} = \widetilde{O}^f T \operatorname{diag}(\pi) \widetilde{O}^{p \top}$$

where T is our usual transition matrix, taking us from h_1 to h_2 .

Lemma 3.1. Assume that the HMM representation is "minimal" — that there is no HMM, with a fewer number of hidden states, which has identical probabilities for observable sequences. Define the range of the process to be $\operatorname{span}\{\mathbb{E}[x_t|x < t]|x_{< t}\}$, and the dimension of the process to be the dimension of this range.

There exist a set of past and future events such that the rank of $\widetilde{P}_{2,1}$ is the dimension of the process. Furthermore, let the thin SVD $\widetilde{P}_{2,p} = U\Sigma V^{\top}$ and let $M = U^{\top}O^f$, there exists an \widetilde{M} such that $\widetilde{M}M$ acts as the identity on any belief state (this \widetilde{M} may not be the pseudo-inverse, but it acts as the inverse on the belief states).

Define
$$\widetilde{P}_{3,x,p}\in\mathbb{R}^{m_f\times m_p}$$
 by
$$\widetilde{P}_{3,x,p}=\Pr[x_2=x]\mathbb{E}\,[X_{3,f}X_p^\top|x_2=x].$$

Then

$$\begin{split} U^{\top} \widetilde{P}_{3,x,p} &= U^{\top} \widetilde{O}^f A_x T \operatorname{diag}(\pi) \widetilde{O}^{p \top} \\ &= U^{\top} \widetilde{O}^f A_x (U^{\top} \widetilde{O}^f)^{-1} (U^{\top} \widetilde{O}^f) T \operatorname{diag}(\pi) \widetilde{O}^{p \top} \\ &= (U^{\top} \widetilde{O}^f) A_x (U^{\top} \widetilde{O}^f)^{-1} (U^{\top} \widetilde{P}_{2,p}) \end{split}$$

so

$$B_x = (U^{\top} \widetilde{O}^f) A_x (U^{\top} \widetilde{O}^f)^{-1} = (U^{\top} \widetilde{P}_{3,x,p}) (U^{\top} \widetilde{P}_{2,p})^+$$

Acknowledgements

Part of these notes were modified from Daniel Hsu's notes (on the general observation events).