Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods Lecture: 22

Spectral methods for learning HMMs

Instructor: Sham Kakade

1 The Transformed Representation

Assume M is invertible. Forx = 1,...,d, define
A, = MA, Mt

Also, as before, define Et = Mh; and _
gt = E[h|z<i] = Mg,
We now have the following updates.

Lemma 1.1. [n this representation, the HMM update rules are:

g = Mm
Joo = LM
Jry1 = 7~§33§t~
GooAz, gt
Prlzip1|zy, ... 2] = f];rogwtﬂgtﬂ

We also have that:

Pr[zy, ...,z = 5;213,, A

Proof. The equations follow directly from the definitions and our HMM representation. The last equation (in the first
claim) follows from UM = O. The second claim also follows from our previous expression (in the last lecture) of the
joint probability Pr[xq, ..., x¢]. O

2 Learning

Assumption 1. Assume that T and O are full rank. Also, assume that w1 > 0.

Define the following matrices:

[Pl]i = Pr(z1 =1)
[P2al;; = Pr(ze=i,21=1)
[PS,z,lhj = PI"(JI3 =1,To =2,T] = j)

Theorem 2.1. Let the “thin” SVD of the cross correlation matrix at some timestep T be E[x,y12]] = UDV . Let
M =UTO. Then M is invertible. Furthermore,

gl = = UTP1
As = (U Psun) (UTPy)" vzeld.



Proof. For g1, we have that:
G1=MEh|=U"E[z;]=U"P,

Now let us prove the equation for ZI. Define:

[X]i,j = PI‘(hQ = i,x1 = j)

and define:
[Yx]i,j = Pf(hg = i,(EQ =T, r = j)
‘We have that:
[Yw] J o= Aw[X]-,J
Hence,
Y,=A4,X
and so:

UT(OY,) =UTOAM*MX = A,UT (0X)

This and by definition of the P’s, _
UTPsuq =AU Py

which proves the result (using the rank conditions to argue that U T P, ; is rank k). For n., first note that:
1"X=pr'

and so:
1"M'UTOX = P/

Thus:
1"MU TPy = P

which proves the result.

3 General observation events

We can consider arbitrary past observation events, in vector representation denoted by X ,, (which an events vector de-
termined by z;_1,x¢—2, ... T ), as opposed to just singleton observations z1; and arbitrary future observation events
in vector representation X, ¢ (an events vector determined by x¢, x¢11, . ..) as opposed to just singleton observations.
Let the set of some past events be {1, ..., mp}, which is represented as an m,-dimensional vector; and let the set of

some future events be {1,...,m¢}, which is represented as an m ¢-dimensional vector.

Let us assume that E[h;] is the stationary distribution (and that time goes back to —c0).. Define the event matrix

Or € R™*K by ~
0", = E[Xy,|he = j].

which is not time varying as we have assumed the chain starts at the stationary distribution. Similarly, define of

RmsxK by
0!, =E Xy ¢|h = j].
which is again not time varying.
Define the matrix P ; € R/ *™» by
Py =E X35 X7 .
Then _ _ _
Py, = O'T diag(m)OPT

where 7' is our usual transition matrix, taking us from h; to hs.



Lemma 3.1. Assume that the HMM representation is “minimal” — that there is no HMM, with a fewer number
of hidden states, which has identical probabilities for observable sequences. Define the range of the process to be
span{E[z:|z < t]|z<+}, and the dimension of the process to be the dimension of this range.

There exist a set of past and future events such that the rank of ﬁQ,l is the dimension of the process. Furthermore,
let the thin SVD 1324, =UXV T andlet M = UT O/, there exists an M such that MM acts as the identity on any

belief state (this M may not be the pseudo-inverse, but it acts as the inverse on the belief states).

Define ]33@,,) € R™7*™M» by
P; . p =Prizs =z]E [Xg,fX;‘IQ = z.

Then
UTf)S,;C,p = UT(ijxT diag(ﬂ)épT
= U0 A, (UTOH M UTONT diag(m)OPT
(UTaf)AI(UTéf)_l(UTﬁZp)
SO _ B N N
B, = (UTONA,(UTON = (UTPs , ,)(U Pyp) T
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