
Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods Lecture: 22

Spectral methods for learning HMMs

Instructor: Sham Kakade

1 The Transformed Representation
Assume M is invertible. For x = 1, . . . , d, define

Ãx =MAxM
−1

Also, as before, define h̃t =Mht and
g̃t = E[h̃t|x<t] =Mg̃t

We now have the following updates.

Lemma 1.1. In this representation, the HMM update rules are:

g̃1 = Mπ1

g̃>∞ = 1>mM
−1

g̃t+1 =
Ãxt

g̃t

g̃>∞Ãxt
g̃t

Pr[xt+1|x1, . . . , xt] = g̃>∞Ãxt+1gt+1

We also have that:
Pr[x1, . . . , xt] = g̃>∞Ãxt . . . Ãx1 g̃1

Proof. The equations follow directly from the definitions and our HMM representation. The last equation (in the first
claim) follows from UM = O. The second claim also follows from our previous expression (in the last lecture) of the
joint probability Pr[x1, . . . , xt].

2 Learning
Assumption 1. Assume that T and O are full rank. Also, assume that π1 > 0.

Define the following matrices:

[P1]i = Pr(x1 = i)

[P2,1]i,j = Pr(x2 = i, x1 = j)

[P3,x,1]i,j = Pr(x3 = i, x2 = x, x1 = j)

Theorem 2.1. Let the “thin” SVD of the cross correlation matrix at some timestep τ be E[xτ+1x
>
τ ] = UDV >. Let

M = U>O. Then M is invertible. Furthermore,

g̃1 = = U>P1

g̃∞ =
(
P>2,1U

)+
P1

Ãx =
(
U>P3,x,1

) (
U>P2,1

)+ ∀x ∈ [d] .
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Proof. For g̃1, we have that:
g̃1 =ME[h1] = U>E[x1] = U>P1

Now let us prove the equation for Ãx. Define:

[X]i,j = Pr(h2 = i, x1 = j)

and define:
[Yx]i,j = Pr(h3 = i, x2 = x, x1 = j)

We have that:
[Yx]·,j = Ax[X]·,j

Hence,
Yx = AxX

and so:
U>(OYx) = U>OAxM

−1MX = ÃxU
>(OX)

This and by definition of the P ’s,
U>P3,x,1 = ÃxU

>P2,1

which proves the result (using the rank conditions to argue that U>P2,1 is rank k). For g̃∞, first note that:

1>X = P>1

and so:
1>M−1U>OX = P>1

Thus:
1>M−1U>P2,1 = P>1

which proves the result.

3 General observation events
We can consider arbitrary past observation events, in vector representation denoted byXt,p (which an events vector de-
termined by xt−1, xt−2, . . . x∞), as opposed to just singleton observations x1; and arbitrary future observation events
in vector representation Xt,f (an events vector determined by xt, xt+1, . . .) as opposed to just singleton observations.
Let the set of some past events be {1, . . . ,mp}, which is represented as an mp-dimensional vector; and let the set of
some future events be {1, . . . ,mf}, which is represented as an mf -dimensional vector.

Let us assume that E[h1] is the stationary distribution (and that time goes back to −∞).. Define the event matrix
Õp ∈ Rmp×K by

Õp·,j = E [Xt,p|ht = j].

which is not time varying as we have assumed the chain starts at the stationary distribution. Similarly, define Õf ∈
Rmf×K by

Õf·,j = E [Xt,f |ht = j].

which is again not time varying.
Define the matrix P̃2,1 ∈ Rmf×mp by

P̃2,1 = E X2,fX
>
1,p.

Then
P̃2,1 = ÕfT diag(π)Õp>

where T is our usual transition matrix, taking us from h1 to h2.
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Lemma 3.1. Assume that the HMM representation is “minimal” — that there is no HMM, with a fewer number
of hidden states, which has identical probabilities for observable sequences. Define the range of the process to be
span{E[xt|x < t]|x<t}, and the dimension of the process to be the dimension of this range.

There exist a set of past and future events such that the rank of P̃2,1 is the dimension of the process. Furthermore,
let the thin SVD P̃2,p = UΣV > and let M = U>Of , there exists an M̃ such that M̃M acts as the identity on any
belief state (this M̃ may not be the pseudo-inverse, but it acts as the inverse on the belief states).

Define P̃3,x,p ∈ Rmf×mp by
P̃3,x,p = Pr[x2 = x]E [X3,fX

>
p |x2 = x].

Then

U>P̃3,x,p = U>ÕfAxT diag(π)Õp>

= U>ÕfAx(U
>Õf )−1(U>Õf )T diag(π)Õp>

= (U>Õf )Ax(U
>Õf )−1(U>P̃2,p)

so
Bx = (U>Õf )Ax(U

>Õf )−1 = (U>P̃3,x,p)(U
>P̃2,p)

+

Acknowledgements
Part of these notes were modified from Daniel Hsu’s notes (on the general observation events).

3


