Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods Lecture: 20
Spectral Methods for Learning Kalman Filters

Instructor: Sham Kakade

1 Kalman Filters

We now summarize a simplified version of linear Gaussian time series. Here, we assume that the transition noise and
observation noise are stationary.
Assume that:
hit1 =Thy +1n

where 7 is a multivariate normal (with some fixed unknown covariance matrix). Also, assume:
Ty = Oht +e

where ¢ is multivariate normal (with some fixed unknown covariance matrix). To completely specify the model, we
must specify the distribution under which h; is drawn from.

1.1 Stationary Kalman filters

Let us assume that T, O, and both noise covariance matrices are full rank. One can show that the posterior distribution
of Pr(h¢|zy,...xi—1) will converge to a multivariate normal, with some asymptotic covariance distribution. Let us
say this distribution is N (heo, Xoo)-
For simplicity, let us assume that the initial hidden state is sampled from this distribution, i.e. A1 ~ N (hoo, Xoo)-
We are interested in keeping track of the hidden state and predicting the next observation. Let us define:

gt = E[ht|$<t]

These are the quantities that we would like to compute.
The Kalman filter says that these expressions have the following form. Initially,

g1 = hoo
and for all future times:
g1 = Tgi+ K(xy — Oge)
Elzip1|r<ir] = Ogea
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Here K is the Kalman gain matrix, and x; — Og; is often referred to as the “innovation”, “measurement residual”,

or “measurement error”’. The KF takes this particularly simple form as we have assumed that h; is sampled from the

asymptotic distribution and that our noise and transition model are stationary. Otherwise, K would vary with time.
Note that these are simple matrix update rules.



1.2 Agnostic Assumptions and best fit Kalman Filters

The more general class of Gaussian linear models is where:
ht+1 = Tht + Nt and Ty = Oht + &

where both noise terms are time dependent Gaussian noise. Again, if these noise covariances are known, then the
Kalman filter is a simple way to compute conditional expectations (and posterior distributions). Here, the Kalman
gain matrix K will be time dependent.

It is straightforward to see in this more general setting that conditional expectation E[z¢|z ;] is linear in 2. In
fact, one can view the Kalman filter as a concise way of computing this conditional expectation (which exploits the
time series structure).

Now among the more general class of state-space models that we are considering, we can ask the question of what
the best linear prediction of E[z:|z ;] is? By linear, we mean in terms of ;.

Lemma 1.1. For any state space model, where:
E[hty1lhe]) =Thy and Elx¢lhi] = Ohy

Let the best linear prediction of E[xy|x <¢] be w - x <. There exists a Gaussian noise model (with T and O the same but
with appropriately chosen time varying covariance matrices), such that the Kalman filters computation of E[x;|x <]
is identical to w - x <.

For example, even if the model is an HMM, the best linear prediction (as a function of the entire history) can be
computed by a Kalman filter (with appropriately chosen noise). We can view this lemma as showing how the best fit
Gaussian noise model/Kalman filters are “robust” even when the underlying dynamics are non-Gaussian.

2 In Our Transformed Representation

Assumption 1 (Stationarity and Full Rank). Assume that:
e T and O are full rank.
e The model has stationary Gaussian noise (with full rank covariance matrices).

e hy is a multivariate normal (with the asymptotic mean and covariance matrix). This implies the Kalman gain
matrix is stationary.

Recall our transformed representation:
hi = Mh; and T = MTM™*
where hy = M ~1hy (since M is invertible) and
Elhss1|he] = Thy and E[ze|he] = Uhy

Also, recall that we can recover both T and U.
Define: _
gt = Elhi|z <] = Mg,

Lemma 2.1. In this representation, the KF is:

g1 = Mg = Mhy
giv1 = Tq+ Kz, —Ugy)
E[$t|$<t] = Ug

where K = MK.



Proof. First, note that: _ _
E[$t|$<t] = E[E[$t|ht]‘$<t] = E[Uht|$<t] = Uﬁt

From the original KF, we have
gt+1 =Tg: + K(z: — Ogy)

By multiplying by M, we have:

gt—‘—l = MTgt + MK(It — Ogt)
= MTM ‘g + K(z; — Elze|z<4])
= T§t+K(:cth§t)

which completes the proof. O

3 Learning the KF and “bottleneck prediction”

As we have T and U already, all that remains to specify is §; and K.

Theorem 3.1. Assume our Stationarity and Full Rank assumption. Let the “thin” SVD of the cross correlation matrix
at some timestep 1 be E[xox{] = UDV . Then we have that M = U " O is invertible. Define

S = E[(z1 —E[21]) (21 - E[t1])"] and o1 = E[(2s — Elas]) (21 — E[21])"]

Then our Kalman filter uses the following parameters:

T = (U'Elzsa{])(U E[z2a]])*
g = UTE[x]
K = U'sysy!

where the inverse exists.
Proof. By our previous lemma, we have that:
E[za|z1] = Ugs
= UTgl + UK(SCl — Ugl)
= ]E[.IQ] +UK<$1 —E[l‘ﬂ)

e Efr; — E[zs]|e1] = UK (21 — Ef1])

Multiplying by (z; — E[x1]) " and taking expectations:

Y01 = UKy,
Now, we have have that: _
UK = %9, 57}
Since U U =1 (as U has orthonormal columns), we have our result. O



