
Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods Lecture: 20

Spectral Methods for Learning Kalman Filters

Instructor: Sham Kakade

1 Kalman Filters
We now summarize a simplified version of linear Gaussian time series. Here, we assume that the transition noise and
observation noise are stationary.

Assume that:
ht+1 = Tht + η

where η is a multivariate normal (with some fixed unknown covariance matrix). Also, assume:

xt = Oht + ε

where ε is multivariate normal (with some fixed unknown covariance matrix). To completely specify the model, we
must specify the distribution under which h1 is drawn from.

1.1 Stationary Kalman filters
Let us assume that T , O, and both noise covariance matrices are full rank. One can show that the posterior distribution
of Pr(ht|x1, . . . xt−1) will converge to a multivariate normal, with some asymptotic covariance distribution. Let us
say this distribution is N(h∞,Σ∞).

For simplicity, let us assume that the initial hidden state is sampled from this distribution, i.e. h1 ∼ N(h∞,Σ∞).
We are interested in keeping track of the hidden state and predicting the next observation. Let us define:

gt = E[ht|x<t]

These are the quantities that we would like to compute.
The Kalman filter says that these expressions have the following form. Initially,

g1 = h∞

and for all future times:

gt+1 = Tgt +K(xt −Ogt)
E[xt+1|x<t+1] = Ogt+1

Here K is the Kalman gain matrix, and xt − Ogt is often referred to as the “innovation”, “measurement residual”,
or “measurement error”. The KF takes this particularly simple form as we have assumed that h1 is sampled from the
asymptotic distribution and that our noise and transition model are stationary. Otherwise, K would vary with time.

Note that these are simple matrix update rules.
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1.2 Agnostic Assumptions and best fit Kalman Filters
The more general class of Gaussian linear models is where:

ht+1 = Tht + ηt and xt = Oht + εt

where both noise terms are time dependent Gaussian noise. Again, if these noise covariances are known, then the
Kalman filter is a simple way to compute conditional expectations (and posterior distributions). Here, the Kalman
gain matrix K will be time dependent.

It is straightforward to see in this more general setting that conditional expectation E[xt|x<t] is linear in x<t. In
fact, one can view the Kalman filter as a concise way of computing this conditional expectation (which exploits the
time series structure).

Now among the more general class of state-space models that we are considering, we can ask the question of what
the best linear prediction of E[xt|x<t] is? By linear, we mean in terms of x<t.

Lemma 1.1. For any state space model, where:

E[ht+1|ht] = Tht and E[xt|ht] = Oht

Let the best linear prediction of E[xt|x<t] be w ·x<t. There exists a Gaussian noise model (with T andO the same but
with appropriately chosen time varying covariance matrices), such that the Kalman filters computation of E[xt|x<t]
is identical to w · x<t.

For example, even if the model is an HMM, the best linear prediction (as a function of the entire history) can be
computed by a Kalman filter (with appropriately chosen noise). We can view this lemma as showing how the best fit
Gaussian noise model/Kalman filters are “robust” even when the underlying dynamics are non-Gaussian.

2 In Our Transformed Representation
Assumption 1 (Stationarity and Full Rank). Assume that:

• T and O are full rank.

• The model has stationary Gaussian noise (with full rank covariance matrices).

• h1 is a multivariate normal (with the asymptotic mean and covariance matrix). This implies the Kalman gain
matrix is stationary.

Recall our transformed representation:

h̃t = Mht and T̃ = MTM−1

where ht = M−1h̃t (since M is invertible) and

E[h̃t+1|h̃t] = T̃ h̃t and E[xt|h̃t] = Uh̃t

Also, recall that we can recover both T̃ and U .
Define:

g̃t = E[h̃t|x<t] = Mgt

Lemma 2.1. In this representation, the KF is:

g̃1 = Mg1 = Mh1

g̃t+1 = T̃ g̃t + K̃(xt − Ug̃t)
E[xt|x<t] = Ug̃t

where K̃ = MK.
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Proof. First, note that:
E[xt|x<t] = E[E[xt|h̃t]|x<t] = E[Uh̃t|x<t] = Ug̃t

From the original KF, we have
gt+1 = Tgt +K(xt −Ogt)

By multiplying by M , we have:

g̃t+1 = MTgt +MK(xt −Ogt)
= MTM−1g̃t + K̃(xt − E[xt|x<t])

= T̃ g̃t + K̃(xt − Ug̃t)

which completes the proof.

3 Learning the KF and “bottleneck prediction”

As we have T̃ and U already, all that remains to specify is g̃1 and K̃.

Theorem 3.1. Assume our Stationarity and Full Rank assumption. Let the “thin” SVD of the cross correlation matrix
at some timestep 1 be E[x2x

>
1 ] = UDV >. Then we have that M = U>O is invertible. Define

Σ11 = E[(x1 − E[x1])>(x1 − E[x1])>] and Σ21 = E[(x2 − E[x2])(x1 − E[x1])>]

Then our Kalman filter uses the following parameters:

T̃ = (U>E[x3x
>
1 ])(U>E[x2x

>
1 ])+

g1 = U>E[x1]

K̃ = U>Σ21Σ−111

where the inverse exists.

Proof. By our previous lemma, we have that:

E[x2|x1] = Ug̃2

= UT̃ g̃1 + UK̃(x1 − Ug̃1)

= E[x2] + UK̃(x1 − E[x1])

i.e.
E[x2 − E[x2]|x1] = UK̃(x1 − E[x1])

Multiplying by (x1 − E[x1])> and taking expectations:

Σ21 = UK̃Σ11

Now, we have have that:
UK̃ = Σ21Σ−111

Since U>U = I (as U has orthonormal columns), we have our result.
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