
Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods Lecture: 2

The SVD and applications

Instructor: Sham Kakade

1 Applications

1.1 Latent Semantic Analysis (LSA) or LSI (LSIndexing)
Let look at an application to information retrieval.

Say we represent a document by a vector d and a query by a vector q, then one score of a match is the cosine score:

similarity =
d · q
‖d‖‖‖q‖

The naive approach is to just use a bag of words to represent these vectors — so the length of the vector is the number
of words (in the language or corpus) and the entry in the k-th position denote the number of times that word appears.
Using just bag of word counts, two difficulties with this approach are synonymy and polysemy.

LSA is a simple way to address this, using a vector space method. Here, let X be the term/document matrix. Let:

X = UDV >

be the SVD of X . We can work with the k-rank approximation to X:

Xk = UkDkV
>
k

So we represent each document and (new) query as a k-vector. The document j is just represented by Vj . A vector
query q is now represented as:

xterm(q) = D−1k U>k qxdocument(d) = D−1k V >k d

Now for recall we can just use the cosine score for retrieval.

1.2 EigenFaces
In vision, a common (and simple) way to represent centered faces is by projecting onto their top singular vectors.

1.3 PageRank
See Wikipedia. Essentially, the PageRank algorithm computes the stationary distribution of the web graph, along with
some ’transition’ noise (which ensure the induced random walk is ergodic). Also, for IR applications, there is a notion
of ’anchor text’, where it is also important to consider the text that co-occurs with a link to another page (e.g. the
website for IBM does not even have the word computer on the front page, but the anchor text will often have more
information about IBM then IBM’s homepage itself).
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2 PCA
Given a finite sample X1, . . . Xn, we have the empirical covariance matrix:

K̂ =
1

n

n∑
i=1

XiX
>
i

PCA is just the KL transform (discussed later) of the empirical Kernel matrix.
Alternative viewpoint:

w1 = arg max
w:‖w‖=1

σ̂2(w ·X) = arg max
w:‖w‖=1

1

n

n∑
i=1

(w ·Xi)
2

and z1 is the value. Next,
Xi ← Xi −

∑
j

(w1 ·Xi)w1

and repeat to find e2 and z2 and so on.

3 Related Ideas for Functions
One can view functions as essentially a “generalized” vector — namely, once can view functions as living in linear
spaces, with associated norms and inner products. For example for functions f(x) and g(x), we can define the norm
‖f‖ =

∫
f(x)dµ(x) and the inner product f · g =

∫
f(x)g(x)dµ(x). Similarly, many of the decomposition methods

apply.

4 Mercer’s Theorem
Theorem 4.1. Suppose K is a continuous symmetric non-negative definite kernel. Then there is an orthonormal
basis {ei} on L2[0, 1] consisting of eigenfunctions of TK such that the corresponding sequence of eigenvalues {λi}
is nonnegative. The eigenfunctions corresponding to non-zero eigenvalues are continuous on [0, 1] and K has the
representation:

K(s, t) =

∞∑
i=1

λjej(s)ej(t)

where the convergence is absolute and uniform.

In finite dimensions,

Theorem 4.2. Suppose K is a square symmetric matrix. Then there exists a decomposition:

S = UDU>

where D is diagonal and U is orthogonal. The diagonal entries of D are the eigenvalues and corresponding columns
of U are the eigenvalues. If K is non-negative definite then all the eigenvalues are positive.

5 Karhunen-Loeve theorem
Consider a centered stochastic process [X]t, for t ∈ [0, 1]. Centered means that E[X]t = 0. In the discrete case we
have a random vector X ∈ Rd where [X]t is the t− thcomponent.

The autocovariance function is:

K(t, s) = Cov(Xt, Xs) =< Xt|Xs >= E[XtXs]

2



which can be viewed as a kernel.
The corresponding integral operator is:

TKΦ(t) =

∫ 1

0

K(t, s)Φ(t)ds

which has eigenvectors and eigenvalues.

Theorem 5.1. (KL) Consider the centered stochastic process Xt for t ∈ [0, 1] with covariance function K(t, s).
Suppose this covariance function is continuous in t, s. By Mercer’s theorem, the corresponding integral operator on
TK has an orthonormal basis of eigenvectors, {ei(t)}. Define:

Zi =

∫ 1

0

Xtei(t)dt

Then Zi are centered orthogonal random variables and:

Xt =

∞∑
i

ei(t)Zi

(where convergence is in the mean and uniform in t). Also,

V ar(Zi) = E(Z2
i ) = λi

where λi is the eigenvalue corresponding to ei.

6 The Pseudo Inverse
For X ∈ Rn×d and Y ∈ Rn , suppose that the equation:

Xβ = Y

has a unique solution and that X is invertible, then:

β = X−1Y

In regression, there is typically noise, and we find a β which minimizes:

‖Xβ − Y ‖

Clearly, if there is no noise, then a solution is given by β = X−1Y , assuming no degeneracies. In general though, the
least squares solution is given by:

β = (X>X)−1XY (1)

which one can argue is a less intuitive (and elegant) expression than when there is an exact solution. Furthermore,
Equation 1 above only holds if X is of rank d (else (X>X)−1 would not be invertible).

Now let us define the Moore-Penrose pseudo-inverse. While there are a variety of more elegant definitions of the
pseudo-inverse, in terms of certain desirable properties, we take the more brute force definition.

First, let us define the ’thin’ SVD.

Definition 6.1. We say X = UΣV > is the “thin” SVD of X ∈ Rn×d if: Un×r and V d×r have orthonormal columns
(e.g. where r is the number of columns) and σ ∈ Rr×r is diagonal, with all it’s diagonal entries being non-zero.

Now we define the pseudo-inverse as follows:
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Definition 6.2. Let X = UΣV > be the thin SVD of X . The Moore-Penrose pseudo-inverse of X , denoted by X+, is
defined as:

X+ = V Σ−1U>

Let us make some observations:

1. First, if X is invertible (so X is square) then X+ = X−1.

2. Suppose that X isn’t square and that Xw = Y has a (unique) solution, then w = X+Y .

3. Now suppose that Xw = Y has (at least one) solution. Then one solution is given by w = X+Y . This solution
is the minimum norm solution w.

4. (geometric interpretation) The matrix X+ maps any point in the range of X to the minimum norm point in the
domain.

With the pseudo-inverse, we have the much more elegant least squares estimator:

Lemma 6.3. The least squares estimator is:
β = X+Y

(Note that the above is alway a minimizer, while the solution provided in Equation 1 only holds if X>X is invertible,
in which case the minimizer is unique).

7 References
Material used was Wikipedia and Santosh Vempala’s lecture notes.
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