
Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods Lecture: 6

Dimensionality Reduction and Learning: Ridge Regression vs. PCA

Instructor: Sham Kakade

1 Intro
The theme of these two lectures is that for L2 methods we need not work in infinite dimensional spaces. In particu-
lar, we can unadaptively find and work in a low dimensional space and achieve about as good results. These results
question the need for explicitly working in infinite (or high) dimensional spaces for L2 methods. In contrast, for spar-
sity based methods (including L1 regularization), such non-adaptive projection methods significantly loose predictive
power.

2 Ridge Regression and Dimensionality Reduction
This lecture will characterize the risk of ridge regression (in infinite dimensions) in terms of a bias-variance tradeoff.
Furthermore, we will show that a simple dimensionality reduction scheme, simply based on PCA, along with just MLE
estimates (in this projected space) performs nearly as well as ridge regression.

3 Risk and Fixed Design Regression
Let us now consider the ‘normal means’ problem, sometimes referred to as the fixed design setting. Here, we have a
set of n points X = {Xi} ⊂ Rd, and let X denote the Rn×d matrix where the i row of X is Xi. We also observe a
output vector Y ∈ Rn. We desire to learn E[Y ]. In particular, we seek to predict E[Y ] as Xβ̂.

The square loss of an estimator w is:

L(w) =
1

n
EY ‖Y −Xw‖2 =

1

n

n∑
i=1

E(Yi −Xiw)2

where the expectation is with respect to Y . Let β be the optimal predictor:

β = arg min
w
L(w)

The risk of an estimator β̂ is defined as:

R(β̂) = L(β̂)− L(β) =
1

n
‖Xβ̂ −Xβ‖2

(which is the fixed design risk). Denoting,

Σ :=
1

n
X>X

we can write the risk as:
R(β̂) = (β̂ − β)>Σ(β̂ − β) := ‖β̂ − β‖2Σ

Another interpretation of the risk is how well we accurately learn the parameters of the model.
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Assume that β̂(Y ) is an estimator constructed with the outcome Y — we drop the explicit Y dependence as this
is clear from context. Let β = EY β̂ be expected weight. We can decompose the expected risk as:

EY [R(β̂)] =
1

n
EY ‖Xβ̂ −Xβ‖2 +

1

n
‖Xβ −Xβ‖2

= EY ‖β̂ − β‖2Σ + ‖β − β‖2Σ

where we have that:
(average) variance =

1

n
EY ‖Xβ̂ −Xβ‖2

and
prediction bias vector = Xβ −Xβ

which shows a certain bias/variance decomposition of the error.

3.1 Risk Bounds for Ridge Regression
The ridge regression estimator using an outcome Y is just:

β̂λ = arg min
w

1

n
‖Y −Xw‖2 + λ‖w‖2

The estimator is then:
β̂λ = (Σ + λI)−1(

1

n
X>Y ) = (Σ + λI)−1(

1

n

∑
YiX

>
i )

For simplicity, let us rotate X such that:

Σ :=
1

n
X>X = diag(λ1, λ2, . . . λd)

(note this rotation does not alter the predictions of rotationally invariant algorithms). With this choice, we have that:

[β̂λ]j =
1
n

∑n
i=1 Yi[Xi]j

λj + λ

It is straightforward to see that:
β = E[β̂0]

and it follows that:
[βλ]j := E[β̂λ]j =

λj
λj + λ

βj

by just taking expectations.

Lemma 3.1. (Risk Bound) If Var(Yi) ≤ 1, we have that:

EY [R(β̂λ)] ≤ 1

n

∑
j

(
λj

λj + λ
)2 +

∑
j

β2
j

λj
(1 + λj/λ)2

This holds with equality if Var(Yi) = 1.
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Proof. For the variance term, we have:

EY ‖β̂λ − βλ‖2Σ =
∑
j

λjEY ([β̂λ]j − [βλ]j)
2

=
∑
j

λj
(λj + λ)2

1

n2
E[

n∑
i=1

(Yi − E[Yi])[Xi]j

n∑
i′=1

(Yi′ − E[Yi′ ])[Xi′ ]j ]

=
∑
j

λj
(λj + λ)2

1

n

n∑
i=1

Var(Yi)[Xi]
2
j

≤
∑
j

λj
(λj + λ)2

1

n

n∑
i=1

[Xi]
2
j

=
1

n

∑
j

λ2
j

(λj + λ)2

This holds with equality if Var(Yi) = 1. For the bias term,

‖βλ − β‖2Σ =
∑
j

λj([βλ]j − [β]j)
2

=
∑
j

β2
jλj(

λj
λj + λ

− 1)2

=
∑
j

β2
jλj(

λ

λj + λ
)2

and the result follows from algebraic manipulations.

There following bound characterizes the risk for two natural settings for λ.

Corollary 3.2. Assume Var(Yi) ≤ 1

• (Finite Dims) For λ = 0,

EY [R(β̂λ)] ≤ d

n

And if V ar(Yi) = 1, then EY [R(β̂λ)] = d
n .

• (Infinite Dims) For λ =

√
‖Σ‖trace

‖β‖
√
n

, then:

EY [R(β̂λ)] ≤
‖β‖

√
‖Σ‖trace

2
√
n

=
‖β‖

√
1
n

∑
i ||Xi||2

2
√
n

≤ ‖β‖‖X‖
2
√
n

where the trace norm is the sum of the singular values and ‖X‖ = maxi ||Xi||2. Furthermore, for all n there

exists a distribution Pr[Y ] and an X such that the infλ EY [R(β̂λ)] is Ω∗(
‖β‖
√
‖Σ‖trace

2
√
n

) (so the above bound is
tight up to log factors).

Conceptually, the second bound is ‘dimension free’, i.e. it does not depend explicitly on d, which could be infinite.
And we are effectively doing regression in a large (potentially) infinite dimensional space.

Proof. The λ = 0 case follows directly from the previous lemma. Using that (a + b)2 ≥ 2ab, we can bound the
variance term for general λ as follows:

1

n

∑
j

(
λj

λj + λ
)2 ≤ 1

n

∑
j

λ2
j

2λjλ
=

∑
j λj

2nλ
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Again, using that (a+ b)2 ≥ 2ab, the bias term is bounded as:∑
j

β2
j

λj
(1 + λj/λ)2

≤
∑
j

β2
j

λj
2λj/λ

=
λ

2
||β||2

So we have that:

EY [R(β̂λ)] ≤ ‖Σ‖trace

2nλ
+
λ

2
||β||2

and using the choice of λ completes the proof.

To see the above bound is tight, consider the following problem. LetXi =
√

n
i and βi =

√
1
i and let Y = Xβ+η

where η is unit variance. Here, we have that λi = 1
i so

∑
j λj ≤ log n and ‖β‖2 ≤ log n, so the upper is logn√

n
. Now

one can write the risk as:

EY [R(β̂λ)] =
1

n

∑
j

(
1
i

1
i + λ

)2 +
∑
j

1
i2

(1 + 1
iλ )2

(1)

=
∑
j

1
n + λ2

(1 + iλ)2
(2)

≥
∫ n

1

1
n + λ2

(1 + xλ)2
dx (3)

= (
1

n
+ λ2)(

1

λ(1 + λ)
− 1

λ(1 + nλ)
) (4)

= (
1

nλ
+ λ)(

1

1 + λ
− 1

1 + nλ
) (5)

(6)

and this is Ω(
√
n), for all λ.

However, now we show that with L2 complexity, we can effectively working in finite dimensions (where the
dimension is chosen as a function of n).

4 PCA Projections and MLEs
Fix some λ. Consider the following ‘keep or kill’ estimator, which uses the MLE estimate if λi ≥ λ and 0 otherwise:

[β̂PCA,λ]j =

{
[β̂0]j if λi ≥ λ
0 else

where β̂0 is the MLE estimator. This estimator is 0 for the small values of λi (those in which we are effectively
regularizing more anyways).

Theorem 4.1. (Risk Inflation of β̂PCA,λ)
Assume Var(Yi) = 1, then

EY [R(β̂PCA,λ)] ≤ 4EY [R(β̂λ)]

Note that the the actual risk (not just an upper bound) of the simple PCA estimate is within a factor of 4 of the
ridge regression risk on a wide class of problems.

Proof. Recall that:

EY [R(β̂λ)] =
1

n

∑
j

(
λj

λj + λ
)2 +

∑
j

β2
j

λj
(1 + λj/λ)2
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Since we can write the risk as:
EY [R(β̂)] = EY ‖β̂ − β‖2Σ + ‖β − β‖2Σ

we have that:
EY [R(β̂PCA,λ)] =

1

n

∑
j

I(λj > λ) +
∑

j:λj<λ

λjβ
2
j

where I is the indicator function.
We now show that each term in the risk of β̂PCA,λ is within a factor of 4 for each term in β̂λ. If λj > λ, then the

ratio of the j − th terms is:

1
n

1
n (

λj

λj+λ )2 + β2
j

λj

(1+λj/λ)2

≤
1
n

1
n (

λj

λj+λ )2

=
(λj + λ)2

λ2
j

≤ (1 +
λ

λj
)2

≤ 4

Similarly, if λj ≤ λ, then the ratio of the j-th terms is:

λjβ
2
j

1
n (

λj

λj+λ )2 +
λjβ2

j

(1+λj/λ)2

≤
λjβ

2
j

λjβ2
j

(1+λj/λ)2

= (1 + λj/λ)2

≤ 4

Since each term is within a factor of 4, the proof is completed.
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