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Abstract

We study maximum entropy correlated equilib-
ria (Maxent CE) in multi-player games. After
motivating and deriving some interesting impor-
tant properties of Maxent CE, we provide two
gradient-based algorithms that are guaranteed to
converge to it. The proposed algorithms have
strong connections to algorithms for statistical
estimation (e.g., iterative scaling), and permit a
distributed learning-dynamics interpretation. We
also briefly discuss possible connections of this
work, and more generally of the Maximum En-
tropy Principle in statistics, to the work on learn-
ing in games and the problem of equilibrium se-
lection.

1 INTRODUCTION

The Internet has been a significant source of new problems
of great scientific interest. One example is understanding
the largely decentralized mechanisms leading to the Inter-
net’s own formation. Another example is to study the out-
comes of the interaction of many individual human and ar-
tificial agents resulting from the modern mechanisms that
the Internet has facilitated during the last ten years (e.g.,
online auction). Such problems have played a major role in
the increased interest in artificial intelligence to the study
of multi-agent systems, as evidenced by the large body of
recent work.

Game theory and mathematical economics have become
the most popular framework in which to formulate and for-
mally study multi-agent systems in artificial intelligence.
This has led the computer science community to become
very active in pursuing fundamental computational ques-
tions in game theory and economics. Computational game
theory and economics has thus emerged as a very important
area of study.

An equilibrium is perhaps the most important solution con-

cept in game theory and in mathematical economics, where
game theory is applied to model competitive economies
[Arrow and Debreu, 1954]. An equilibrium is a point of
strategic stance between the players in a game that charac-
terizes and serves as a prediction to a possible outcome of
the game.

The general problem of equilibrium computation is funda-
mental in computer science [Papadimitriou, 2001]. In the
last decade, there have been many great advances in our
understanding of the general prospects and limitations of
computing equilibria in games. Just late last year, there
was a breakthrough on what was considered a major open
problem in the field: computing equilibria was shown
to be hard, even for two-player games [Chen and Deng,
2005b,a, Daskalakis and Papadimitriou, 2005, Daskalakis
et al., 2005, Goldberg and Papadimitriou, 2005]. How-
ever, there are still important open questions. The work
presented here contributes in part to the problem of com-
puting equilibria with specific properties.

One important notion of equilibrium in non-cooperative
games of recent interest in computational game theory is
that of correlated equilibria (CE), a concept due to Aumann
[1974]. A CE generalizes the more widely-known equilib-
rium notion due to Nash [1951]. It also offers some inter-
esting advantages over Nash equilibria (NE); among them,
(a) it allows a weak form of “cooperation” that can lead
to “better” and “fairer” outcomes while maintaining indi-
vidual player rationality (i.e., each individual still plays a
best-response strategy), (b) it is consistent with Bayesian
rationality [Aumann, 1987], and (c) unlike NE, reasonably
natural learning dynamics in repeated games converge to
CE (see, for example, Foster and Vohra [1997], Foster and
Vohra [1999], Hart and Mas-Colell [2000]). The textbook
example of a CE is the traffic light at a road intersection:
a correlating device for which the best response of the
individual drivers approaching the intersection is to obey
the signal, therefore leading to a better overall outcome
not generally achievable by any NE (e.g., avoids accidents
without forcing any unnecessary, discriminatory delays).

In this paper, we study maximum entropy correlated equi-



libria (Maxent CE). We argue that the Maximum Entropy
Principle (Maxent), due to Jaynes [1957], can serve as a
guiding principle for selecting among the many possible
CE of a game. This is in part because, as we show, Maxent
CE affords individual players additional guarantees over ar-
bitrary CE and exhibits other representational and compu-
tationally attractive properties. While in many cases CE
has been shown more computationally amenable than NE,
computing CE with specific properties has been found to
be hard in general.

We provide simple gradient-based algorithms for comput-
ing Maxent CE that closely resemble statistical inference
algorithms used successfully in practice (see, for example,
Berger et al. [1996] and Della Pietra et al. [1997]). The
algorithms have a “learning” interpretation. In particular,
they can be seen as natural update rules which individual
players use during some form of pre-play negotiation. The
update rules can also be implemented efficiently. We relate
this work to that on learning dynamics and discuss other
possible connections to the general literature on learning
in games. More specifically, we comment on how Maxent
may help us characterize, just as it does for many natural
systems (e.g., in thermodynamics), the equilibrium behav-
ior that is likely to arise from the dynamics of rational in-
dividuals, each following his or her own individually con-
trolled learning mechanism.

2 PRELIMINARIES

In this section, we introduce some basic game-theoretic
concepts, terminology and notation. (For a thorough intro-
duction to game theory, see Fudenberg and Tirole [1991],
for instance.)

Let n be the number of players in the game. For each player
i = 1, . . . , n, let Ai be its finite set of actions (also called
pure strategies). Let A ≡ ×n

i=1Ai be the joint-action
space; each element a ≡ (a1, . . . , an) ∈ A is a called a
joint action, i.e., if ai is the ith component of a, player i
plays ai in a. Let A−i ≡ ×n

j=1,j 6=iAj denote the joint
action space of all the players except that of i. Similarly,
given a ∈ A, let a−i ∈ A−i denote the joint action, in a,
of all the players except that of i. It is often convenient to
denote the joint action a by (ai, a−i) to highlight the action
of player i in a.

Let Mi : An → R be the payoff function of player i, i.e.,
if players play joint action a ∈ A, then each player i in-
dividually receives a payoff value of Mi(a). Let M ≡
{M1, . . . ,Mn} be the set of payoff functions, one for each
player.

An n-player game in normal form is defined by the tuple
G ≡ (A,M). 1

1Such games are also often referred to as strategic-form or

Each player’s objective is to maximize their own (expected)
payoff. In the context of a game, a probability distribution
P over An is called a joint mixed strategy, i.e., a random-
ized strategy where players play a ∈ An with probability
P(a). Given a joint mixed strategy P, let P(ai) denote
the individual mixed strategy of player i, i.e., the marginal
probability that player i plays ai in Ai, and P(a−i|ai) the
conditional joint mixed strategy of all the players except i
given the action of player i, i.e., the conditional probability
that, given that player i plays ai, the other players play a−i.

An equilibrium is generally considered the solution of a
game. An equilibrium can be viewed as a point of strategic
stance, where every player is “happy,” i.e., no player has
any incentive to unilaterally deviate from the way they play.

This paper concerns correlated equilibria. Let
Gi(a′i, ai, a−i) ≡ Mi(a′i, a−i) − Mi(ai, a−i) denote
player i’s payoff gain from playing a′i instead of ai when
the other players play a−i. A correlated equilibrium (CE)
for a game G is a joint mixed strategy P such that for
every joint action a drawn according to P, each player i,
knowing P and its own action ai in a only, has no payoff
gain, in expectation, from unilateral changing its play
to another action a′i ∈ Ai instead; formally, if for every
player i, and every action pair (ai, a

′
i) ∈ A2

i , such that
ai 6= a′i and P(ai) > 0,∑

a−i∈A−i
P(a−i|ai)Gi(a′i, ai, a−i) ≤ 0.

One way to establish the existence of CE for any game
is through its connection to Nash equilibria (NE). An NE
is a CE P that is a product distribution, i.e.,P(a) =∏n

i=1 P(ai) for all a, and therefore players play indepen-
dently. The classical result of Nash [1951] is that for any
game there exists a (Nash) equilibrium, thus CE always ex-
ist.

Given a game G, it is computationally convenient to ex-
press its CE conditions as the following equivalent sys-
tem of linear constraints on the joint-mixed-strategy values
P(a): 2 for each player i, and for all (ai, a

′
i) ∈ A2

i such that
ai 6= a′i,∑

a−i∈A−i
P(ai, a−i)Gi(a′i, ai, a−i) ≤ 0; (1)

for all a ∈ A, P(a) ≥ 0, and
∑

a∈A P(a) = 1. We re-
fer to the set of all P that satisfy this linear system as the
correlated equilibria of G and denote it simply by CE , i.e.,
P ∈ CE if and only if P is a CE.

matrix games because in the finite-action case one can view each
payoff function as an n-dimensional matrix indexed by the join-
actions.

2In contrast, because an NE is product distribution, the con-
ditions are not linear on the individual players mixed strategies
P(ai).



3 MAXENT CE AND ITS PROPERTIES

Given a joint mixed strategy P, let H(P) ≡∑
a∈A P(a) ln(1/P(a)) be its (Shannon) entropy. For-

mally, a Maxent CE is the joint mixed strategy P∗ =
arg maxP∈CE H(P).

We state the results presented in the remaining of this sec-
tion without proofs; the proofs will become clear from the
descriptions in the next section.

3.1 CONCEPTUAL PROPERTIES

Consider the following scenario. A rational player is will-
ing to negotiate and agree to some form of “joint” strategy
with the other players. At the same time, the player wants
to try to conceal its own behavior, relative to the agreed-
upon joint strategy, by making it difficult to predict. If ev-
ery player has the same objective, how should they (agree
to) play the game? Alternatively, can we suggest a joint
strategy that satisfies all the players but complicates their
prediction of each others’ individual strategies? We pro-
pose Maxent CE as a formal and natural answer to these
questions.

The concept of conditional entropy in information theory
provides a measure of the predictability of a random
process from another [Cover and Thomas, 2006]. As
such, conditional entropy helps quantify the uncertainty
inherent in the players’ strategies. Let P(ai|a−i) denote
the conditional mixed strategy of player i given the actions
of the other players, i.e., the probability, with respect
to P, that player i plays ai given that the other players
play a−i. Let us view Ai and A−i as random variables
corresponding to the play of player i and the others, respec-
tively, under P. We can then denote by HAi|A−i

(P) =
−
∑

a−i∈A−i
P(a−i)

∑
ai∈Ai

P(ai|a−i) log P(ai|a−i)
the entropy of the play of player i conditioned on
knowledge about the play of the other players.

Consider any group of players that wishes to predict the
strategy of another player based on their own play. Con-
ceptually, we can think of the conditional entropy as a mea-
sure on how hard this is: the larger the conditional entropy,
the harder the prediction. Let us allow each individual
player i the opportunity to change from a suggested CE P
to another CE P′ but the player can only change its condi-
tional mixed strategy P′(ai|a−i), not the joint mixed strat-
egy of the other players P(a−i); thus, P′(a) must equal
P′(ai|a−i)P(a−i). We show that an important property
of the Maxent CE P∗ of a game is that no player can uni-
laterally change to or suggest another allowed CE and in-
crease its conditional entropy of play. More formally, given
a joint mixed strategy P′ and a player i, let P ′

−i denote
the marginal of P ′ over A−i, and let CE i(P′

−i) = {P ∈
CE|P(a−i) = P′

−i(a−i) for all a−i ∈ A−i}.

Proposition 1 (Player Optimality of Maxent CE) If P∗

is the Maxent CE of a game G, then for each player i, we
have P∗ = arg maxP∈CE(P∗

−i)
HAi|A−i

(P).

The proof follows easily from the definition of a Maxent
CE and the chain rule for (joint) entropies.

3.2 SIMPLE AND COMPACT REPRESENTATION

Another interesting property of Maxent is that it is, in a
sense, the most simple CE, and permits a very compact rep-
resentation. Let m = maxi |Ai| be the maximum number
of actions of any player. Then, the number of parameters
needed is O(nm2).

Theorem 1 (Maxent CE Representation) Given an n-
player game G, its Maxent CE P∗ has the following para-
metric form: for all a,

P∗(a) ∝ exp

− n∑
i=1

∑
a′i∈Ai\{ai}

λ∗i,ai,a′i
Gi(a′i, ai, a−i)

 ,

where λ∗i,ai,a′i
≥ 0, for all players i = 1, . . . , n, and for all

of its action pairs (ai, a
′
i) ∈ A2

i such that ai 6= a′i, are the
parameters.

This form is not surprising for those familiar with maxent
optimization, as the parameters corresponds to Lagrange
multipliers (i.e., the dual variables). In the game context,
the parameters λ∗ have a natural interpretation. For ex-
ample, the parameter λ∗i,ai,a′i

roughly measures the ten-
dency that player i has to prefer ai over a′i. For instance,
λ∗i,ai,a′i

> 0 if and only if player i is indifferent between
ai and a′i, i.e., the corresponding CE (inequality) condition
holds with equality. Thus, if the player has a strict pref-
erence of ai over a′i, i.e., the corresponding CE condition
holds with strict inequality, then λi,ai,a′i

must be 0.

We note that due to a technical condition, the results
presented in this paper should be appropriately qualified.
The expression for the Maxent CE given above hints at
this complication: although the Maxent always exists, be-
cause CE always exists, one can see the need to appro-
priately modify the representation when the Maxent CE
does not have full support. The results do hold, for in-
stance, if the game has some CE with full support. They
hold more generally for the case of Maxent approximate
CE, where we allow the possibility that each player can
gain by deviating, but no more than some small amount
ε > 0, i.e., for all i, and for all ai 6= a′i, we allow∑

a−i
P(ai, a−i)Gi(a′i, ai, a−i) ≤ ε. The modifications to

the case of approximate CE are easy, and the details are pre-
sented in a companion technical report [Ortiz et al., 2006].
We ignore this issue throughout this paper in the interest of
presentation.



3.3 PROBABILISTIC STRUCTURE

The Maxent CE can exploit available strategic structure in
the game. As an example, we now discuss the probabilistic
structure of Maxent CE in the particular context of graphi-
cal games [Kearns et al., 2001], a graphical model for game
theory. The representation size of games in normal form
is O(nmn), exponential in the number of players. Such
sizes render the normal-form representation of games inad-
equate when modeling problems as games with many play-
ers, as it would be the case in many real-world problems,
specially in the Internet. Just like probabilistic graphical
models allow us to model large but structured probabilis-
tic systems, graphical games allow us to deal with large-
population games by providing compact representation for
them.

Let G = (V,E) be an undirected graph where the vertices
or nodes V = {1, 2, . . . , n} correspond to the players in the
game. The neighbors of a player i in G are those players
that are connected to i by a single edge in E. Given a player
i, we refer to the player i and its neighbors as the neighbor-
hood Ni = {j|(i, j) ∈ E}∪{i} of player i (note that Ni in-
cludes i). The graph has a simple meaning: a player’s pay-
off is only a function of the actions of players in its neigh-
borhood. For every player i, let ki = |Ni| be the size of
its neighborhood with Ni = {j1, j2, . . . , jki

} ⊂ V and de-
note by aNi ≡ (aj1 , aj2 , . . . , ajki

) ∈ ×j∈NiAj ≡ ANi the
joint action of only players in the neighborhood of player i.
Given a graph G, for each player i, its local payoff function
M ′

i : ANi
→ R maps the the joint-actions aNi

of players
in its neighborhood in G to a real number M ′

i(aNi
). For

each player i, the payoff function Mi of player i is such
that Mi(a) = M ′

i(aNi). LetM′ ≡ {M ′
1, . . . ,M

′
n} be the

set of local payoff functions. A graphical game is defined
by the 3-tuple GG = (A, G,M′).

Recall that m = maxi |Ai|. Let k = maxi |Ni| be the
largest neighborhood size in G. The representation size of
a graphical game is O(nmk), exponential in the size of the
largest neighborhood, not the number of players. In fact,
if k � n, we obtain exponential savings in representation
size. Note that the generality of the normal-form game is
not lost because we can represent any game by using a fully
connected graph; we just gain representationally for games
with richer strategic structure.

Let GN denote the extended-neighborhood graph of G,
i.e., the graph that results from adding edges between every
neighbor of a player; formally, if G = (V,E), then GN =
(V,EN ), where EN = E ∪ {(i, j)|i, j ∈ Nk for some k}.
The following result follows easily from Theorem 1 above
and the strategic structure of the graphical game.

Corollary 1 (Probabilistic Structure of Maxent CE)
Given a graphical game GG with graph G, the Maxent CE
of GG is a Markov random field with respect to GN .

There is exactly one potential in the MRF for each player,
and each potential is only over the neighborhood of the
player.

The representation result of Kakade et al. [2003] states that
given any CE, one can represent it by another with the same
size as the representation size of the graphical game, mod-
ulo expected payoff equivalence. The proof uses a max-
imum entropy argument based on matching the neighbor-
hood marginals of the original CE. Here we concentrate ex-
plicitly on the Maxent CE and give an explicit expression
for that equilibrium in terms of the players’ payoff func-
tions which uses only O(nm2) parameters, as opposed to
O(nmk).

This corollary, which can also be derived from the Rep-
resentation Theorem of Kakade et al. [2003], is signifi-
cant because it elucidates the probabilistic structure of the
CE. It also lets us exploit what is known from the litera-
ture on probabilistic graphical models. For instance, we
can make qualitative statements about the structure of the
CE (e.g., which players play independently conditioned on
fixing the actions of a separate set of players) that depend
only on the graph structure, and not the actual payoff val-
ues. This connection also establishes the efficient imple-
mentation of the Maxent CE (i.e., drawing samples effi-
ciently from it) for bounded-tree-width graphical games,
and allows approximate implementations for more general
graphs through well-known and broadly used techniques
such as Gibbs sampling.

3.4 COMPUTATION

The following result is the main computational contribution
of this paper. The next section is devoted to its derivation.

Theorem 2 (Maxent CE Computation) Given a game G,
there exist gradient-based algorithms with guaranteed con-
vergence to the Maxent CE of G.

We also note that each iteration of the algorithms consti-
tutes a natural step and can be computed in time poly-
nomial in the representation size for normal-form games
and, more generally, graphical games whose neighborhood
graphs have bounded tree-width; as noted earlier, approxi-
mations are also possible for more general graphs.

Kakade et al. [2003] give an algorithm to compute a
single exact CE in graphical games with bounded tree-
width in time polynomial on the representation size of the
game based on a simple linear program, 3 thus extend-
ing a well-known previous result for normal-form games
[Gilboa and Zemel, 1989]. Papadimitriou and Roughgar-
den [2005] present an alternative algorithm for computing

3The result given there is for tree graphical games, but a simple
application of standard arguments and ideas from the literature on
probabilistic graphical models extends it to the case of bounded-
tree-width graphs.



CE in bounded-tree-width graphical games and strength-
ens it by showing that it is hard to compute the socially
optimum CE, i.e., the CE that maximizes the sum of the
players’ expected payoffs. For bounded-tree-width graphi-
cal games, both algorithms can guarantee a representation
size for the resulting CE that is at most exponential in the
tree-width of the graph of the graphical game. It is also
important to note that the kind of equilibrium that previ-
ous algorithms compute corresponds, roughly speaking, to
those that maximize some linear function of the neighbor-
hood marginals of the graphical game.

In a surprising result, Papadimitriou [2005] gives a
polynomial-time algorithm for computing a single exact
CE for a large class of compactly-representable games, in-
cluding graphical games. The goal there is to find any CE,
and thus, not one with a specific property. The algorithm
also uses duality, but in a different way than ours. It is also
interesting that the CE found by that algorithm can be rep-
resented by a mixture of a polynomial number of product
distributions as components, which is also different from
the Maxent representation given above.

4 COMPUTING MAXENT CE

Computing the Maxent CE is a convex optimization prob-
lem, allowing the application of efficient algorithms al-
ready developed for such problems (see [Boyd and Van-
derberghe, 2004]). Here, we solve this problem by us-
ing duality, and provide specific gradient-based algorithms
that monotonically converge to the unique dual optimum.
The algorithms also have a natural distributed learning-
dynamics interpretation which we discuss in the next sec-
tion.

Following a standard argument, we obtain that the La-
grange dual function reduces to g(λ) = − lnZ(λ) where
Z(λ) =

∑
a exp(−

∑
i

∑
a′i 6=ai

λi,ai,a′i
Gi(a′i, ai, a−i)).

The dual problem reduces to finding supλ≥0 g(λ). The
relationship between the dual variables λ and the primal
variables P ≡ Pλ is as usual: for all a,

log P(a) = −
∑

i

∑
a′i 6=ai

λi,ai,a′i
Gi(a′i, ai, a−i)− log Z(λ).

4.1 ALGORITHMS

We now present two gradient-based algorithms for com-
puting supλ≥0 g(λ). For convenience, we use the notation
[x]+ ≡ max(0, x). We also denote Pt ≡ Pλt

,

R+
i,ai,a′i

(t) =
∑
a−i

Pt(ai, a−i)[Gi(a′i, ai, a−i)]+,

R−
i,ai,a′i

(t) =
∑
a−i

Pt(ai, a−i)[−Gi(a′i, ai, a−i)]+,

and

Ri,ai,a′i
(t) ≡ ∇i,ai,a′i

g(λt) = R+
i,ai,a′i

(t)−R−
i,ai,a′i

(t).

We call Ri,ai,a′i
(t) the regret that player i has for playing

ai instead of a′i, with respect to Pt.

The logarithmic-gradient algorithm is as follows: initialize
λ0 ≥ 0 arbitrarily and at every round t ≥ 0, set

λt+1
i,ai,a′i

← [λt
i,ai,a′i

+ δt
i,ai,a′i

]+ (2)

where

δt
i,ai,a′i

=
1
2c

log
(
R+

i,ai,a′i
(t)/R−

i,ai,a′i
(t)
)

(3)

and the constant c is such that c ≥∑
i

∑
a′i 6=ai

|Gi(a′i, ai, a−i)| for all ai, a−i.

The dynamic-step-size gradient-ascent algorithm is the
same except that it uses

δt
i,ai,a′i

=
1
2c

1
R+

i,ai,a′i
(t) + R−

i,ai,a′i
(t)
∇i,ai,a′i

g(λt)

=
1
2c

R+
i,ai,a′i

(t)−R−
i,ai,a′i

(t)

R+
i,ai,a′i

(t) + R−
i,ai,a′i

(t)

=
1
c

(
R+

i,ai,a′i
(t)

R+
i,ai,a′i

(t) + R−
i,ai,a′i

(t)
− 1

2

)
. (4)

4.2 CONVERGENCE

We show that if we use either algorithm at each round,
then the sequence Pt converges to the Maxent CE. Due to
space constraints, we omit the details of the proof and refer
the reader to the companion technical report [Ortiz et al.,
2006].

The core element in the proof is based on an auxiliary func-
tion, variational approach similar to Dudı́k et al. [2004]
and Collins et al. [2002]. The idea is to lower bound the
change in the dual value and then maximize that bound.
The following is a sketch. Let si(a′i, ai, a−i) = 1 if
Gi(a′i, ai, a−i) ≥ 0, and −1 otherwise. First note that,
by Jensen’s inequality,

e

„P
i

P
a′

i
6=ai

|Gi(a′i,ai,a−i)|
c (−cδi,ai,a′

i
si(a

′
i,ai,a−i))

«
≤∑

i

∑
a′i 6=ai

|Gi(a′i, ai, a−i)|
c

e
−cδi,ai,a′

i
si(a

′
i,ai,a−i)+

1−
∑

i

∑
a′i 6=ai

|Gi(a′i, ai, a−i)|
c

 .

Applying this inequality and linearity of expectation, we



get

Zt+1/Zt

≤
∑

i,ai,a′i,ai 6=a′i

(
e
−cδi,ai,a′

i − 1
) R+

i,ai,a′i
(t)

c
+

(
e
cδi,ai,a′

i − 1
) R+

i,ai,a′i
(t)

c
+ 1.

Minimizing with respect to δ leads the logarithmic-gradient
algorithm. The gradient-ascent algorithm follows similarly
after applying the well-known inequality 1 + x ≤ ex ≤
1 + x + x2 for |x| < 1 to the bound, before minimizing.
We then show that in fact δ = 0 if and only if g(λt) =
maxλ≥0 g(λ) = maxP∈CE H(P).

5 A LEARNING-DYNAMICS VIEW

In this section, we connect the algorithms to simple learn-
ing dynamics [Singh et al., 2000]. Convergence of best-
response-gradient dynamics to NE is not always possible
[Hart and Mas-Colell, 2003]. In contrast, the analogous
process presented here is guaranteed to converge to the
Maxent CE.

Consider the following simple learning dynamics based on
distributed gradient ascent. In this case, each player is
known to play independently, and thus holds its own mixed
strategy Pi over just Ai. At every round t, each player i
sends to all the other players its current strategy Pt

i. Each
player i then computes the expected payoff from playing
a particular action when the others play according to their
broadcasted strategy. Assuming the other players maintain
their strategy, each player then improves over its strategy by
changing it in the direction of the gradient of its expected
payoff

∑
a Pi(ai)(

∏
j 6=i P

t
j(aj))Mi(ai, a−i) with respect

to its own strategy Pi. Formally, each player i gradient-
ascent update rule is, for each ai,

Pt+1
i (ai)← Pt

i(ai) + αt
∑
a−i

∏
j 6=i

Pt
j(aj)

Mi(ai, a−i),

where αt is the step size, and ensuring that the updates lead
to a proper probability distribution. There has been quite a
bit of work that tries to understand the convergence prop-
erties of such update rules. However, it is known that in
general, update rules of this kind are not guaranteed to con-
verge to NE.

We can view the gradient-based algorithms presented in
the previous section as a type of distributed learning via a
message-passing process that is analogous to the gradient-
ascent update rule just described. Now, however, because
the players are negotiating a joint mixed strategy, each
player suggests its own joint mixed strategy P(a). For
conceptual presentation only, let us introduce an additional

“external player” or “arbiter;” just like in gradient dynam-
ics, this is not really needed as each individual can broad-
cast its suggested joint mixed strategy and perform the
functions of the arbiter. At each round t, the arbiter takes
suggestions from each player i about its preferred joint
mixed strategy Pt

i. The arbiter then processes those sug-
gestions by forming a single joint mixed Pt as follows,

Pt(a) ∝
n∏

i=1

Pt
i(a),

which it then sends back to each player for its considera-
tion.

We can interpret Pt as follows. We can think of each player
using their own joint mixed strategy Pt

i to draw joint ac-
tion suggestions. Using this mechanism, the players actu-
ally perform a joint play only when everybody draws the
same joint action. When play actually occurs, the proba-
bility that they all agree to play a is in fact Pt(a)! The
arbiter, in some sense, serves as a surrogate that accelerates
joint-action agreements; thus, only one draw is needed!

Throughout the process, each player i maintains a paramet-
ric joint probability distribution which at any time t takes
the form

Pt
i(a) ∝ exp

− ∑
a′i 6=ai

λt
i,ai,a′i

Gi(a′i, ai, a−i)

 ,

where λt
i,ai,a′i

corresponds to the current value of its own
parameters. Each player also updates the parameters us-
ing any of the update rules described in the previous sec-
tion. We can see from the update rules that each player
only needs to know its own payoff, current parameter val-
ues, and no other external knowledge other than the current
global joint mixed strategy. When an arbiter is present, no
knowledge of the other players’ suggestions is needed, and
without an arbiter, only the individual joint mixed strategies
at the current time step are required, not the other play-
ers’ parameters or payoff functions that define those strate-
gies. Each player can thus maintain their own parameter
and payoff values private.

The update rules have a very natural interpretation for each
player. If Ri,ai,a′i

(i.e., the gradient of the dual) is positive,
then player i has regret over playing ai instead of a′i with
respect to the currently agreed (global) joint distribution of
play. Therefore, assuming the other players maintain their
strategy, the player should increase the value of λi,ai,a′i

so
as to reduce the probability that the player wants to play
ai (and indirectly increase that of playing a′i); a similar
reasoning applies to the case that Ri,ai,a′i

< 0. It is not
hard to see that by using the learning (or pre-play negotia-
tion) mechanism just described, the players are effectively
computing the Maxent CE in a distributed way. Thus, the
convergence result guarantees that this process in fact con-
verges to the Maxent CE.



6 DISCUSSION

On the question of equilibrium selection. From a repre-
sentational standpoint, “simpler” CE are better. Motivated
by the representational results of Kakade et al. [2003] on
CE in graphical games, we initially considered the follow-
ing question: Are there natural learning rules directly lead-
ing to “compactly representable” and “reasonably struc-
tured” CE that exploit the strategic structure of the graph-
ical game? It turns out that this question is harder than it
first appears.

From a learning standpoint, it has been found that when
agents in an environment simultaneously learn to act using
natural learning rules, as in so called no-regret learning,
convergence of their empirical play is guaranteed, not to
Nash, but to the set of CE (see, for instance, Foster and
Vohra [1999] and Hart and Mas-Colell [2000]). Currently,
there is little understanding of the specific equilibria those
types of learning rules might converge to. Thus, there has
been considerable interest in trying to characterize in any
way the behavior of natural learning rules leading to CE.
While we believe our work is a step towards addressing
this question, in our own preliminary experiments, the em-
pirical play produced by no-regret-type learning rules does
not seem to converge to a specific CE, let alone the Maxent
CE. The question is, are there other kind of natural learning
rules that do converge to the Maxent CE?

Because a game can have many equilibria, another related
question is, which equilibria are more natural or likely to
naturally arise from the players’ dynamics? This “selec-
tion” question is not particular to game theory. In sta-
tistical estimation, for instance, one asks which probabil-
ity distribution should be chosen out of all distributions
consistent with the data. The Maximum Entropy Princi-
ple [Jaynes, 1957] has proved to be a natural and useful
guiding principle with wide applicability beyond statistics.
Maxent has often helped to characterize equilibria in many
natural systems (particularly, in thermodynamics). We be-
lieve Maxent may be useful to study equilibria that are ac-
tually reached under simple learning dynamics and empir-
ical play. From an information-theoretic point of view, the
maximum entropy distribution is the “simplest” as a conse-
quence of being the most “uninformative.” Hence, it is not
unreasonable to think that Maxent can also serve as a useful
guiding principle to the question of equilibrium selection in
game theory.

Maxent vs. Social Welfare. In game theory, an equilib-
rium is a descriptive concept of any stable outcome of the
interaction of rational non-cooperative players in a game.
As such, game theory by itself imposes no classification of
equilibria as good or bad (as in the physical sciences, equi-
libria are only stable states). Understanding how stable out-
comes can be achieved which are somehow “socially opti-

mal” (a notion which in and of itself is thorny to define),
particularly when players are not cooperative, is an impor-
tant open problem.

It is nevertheless instructive to explore the connections be-
tween Maxent CE and other popular equilibrium-selection
notions, like the socially optimum CE with respect to to-
tal welfare (i.e. the total sum of expected payoffs). We
can compute the socially optimum CE using a linear pro-
gram. In many simple, classical toy games (e.g., Battle
of the Sexes, Shapley, etc.), the Maxent CE is a NE, and,
as with NE, the Maxent CE can achieve lower payoff than
the socially optimal one. As is well known, there can be
both better and worse CE than NE with respect to sum total
welfare in a game. Similarly, in general, we expect there
to be both better and worse CE than the Maxent CE (with
regards to sum total welfare). We should note that it is
unclear whether the equilibrium which maximizes the sum
total welfare is the most appropriate concept that character-
izes complex systems.

Conclusions. We propose maximum entropy as a use-
ful guiding principle to the question of equilibrium selec-
tion in game theory. We motivated and studied maximum
entropy correlated equilibria and showed that it has some
very useful representational and computational properties.
In particular, we presented a logarithmic-gradient and a
(dynamic-step-size) gradient-ascent algorithm and showed
that they are guaranteed to converge to the Maxent CE for
any game. Each round of the algorithms can be performed
efficiently for a wide class of games, including normal-
form and some graphical games (e.g., those with bounded
tree-width); widely popular and effective approximation
techniques such as Gibbs sampling can be used for gen-
eral graphical games. The algorithms are similar to others
used for statistical estimation which have been found effec-
tive in many practical applications. Finally, we provided a
view of the algorithms in terms of learning or pre-play ne-
gotiation dynamics. We believe Maxent CE may help us
understand the properties of the equilibria that the empir-
ical play generated by some natural learning mechanisms
might converge to.
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