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ABSTRACT
We analyze the problem of designing a truthful pay-per-click
auction where the click-through-rates (CTR) of the bidders
are unknown to the auction. Such an auction faces the clas-
sic explore/exploit dilemma: while gathering information
about the click through rates of advertisers, the mechanism
may loose revenue; however, this gleaned information may
prove valuable in the future for a more profitable alloca-
tion. In this sense, such mechanisms are prime candidates
to be designed using multi-armed bandit techniques. How-
ever, a naive application of multi-armed bandit algorithms
would not take into account the strategic considerations of
the players — players might manipulate their bids (which
determine the auction’s revenue) in a way as to maximize
their own utility. Hence, we consider the natural restriction
that the auction be truthful.

The revenue that we could hope to achieve is the expected
revenue of a Vickrey auction that knows the true CTRs, and
we define the truthful regret to be the difference between the
expected revenue of the auction and this Vickrey revenue.
This work sharply characterizes what regret is achievable,
under a truthful restriction. We show that this truthful re-
striction imposes statistical limits on the achievable regret —
the achievable regret is Θ̃(T 2/3), while for traditional bandit
algorithms (without the truthful restriction) the achievable

regret is Θ̃(T 1/2) (where T is the number of rounds). We

term the extra T 1/6 factor, the ‘price of truthfulness’.

Categories and Subject Descriptors: F.2.m [ANALY-
SIS OF ALGORITHMS AND PROBLEM COMPLEXITY]:
Miscellaneous

General Terms: Economics, Algorithms.

Keywords: Online, Multi-Armed-Bandit, Truthful, Auc-
tions, Regret, Pay-per-click.
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1. INTRODUCTION
Pay-per-click auctions are the workhorse auction mech-

anisms for web-advertising. In this paradigm, advertisers
are charged only when their displayed ad is ‘clicked’ on (see
Lahie et. al. [6] for a survey). In contrast, more tradi-
tional ‘pay-per-impression’ schemes charge advertisers each
time their ad is displayed. Such mechanisms are appealing
from an advertisers standpoint as the advertiser now only
has to gauge how much they value someone actually view-
ing their website (after a click) vs. just looking at their ad
(one may expect the former to be easier as it is closer to the
outcome that the advertiser desires). From a mechanism de-
sign standpoint, we clearly desire a mechanism which elicits
advertisers preferences in a manner that is profitable.

A central underlying issue in these pay-per-click auctions
is estimating which advertisers tend to get clicked on more
often. Naturally, whenever the mechanism displays an ad
which is not clicked, the mechanism receives no profit. How-
ever, the mechanism does obtain information which is po-
tentially important in estimating how often that advertiser
gets clicked (the ‘click through rate’ of an advertiser). In this
sense, the mechanism faces the classic explore/exploit trade-
off: while gathering information about the click through rate
of an advertiser, the mechanism may lose revenue; however,
this gleaned information may prove valuable in the future
for a more profitable allocation.

The seminal work of Robbins [12] introduced a formalism
for studying this exploration/exploitation tradeoff, which is
now referred to as the multi-armed bandit problem. In this
foundational paradigm, at each time step a decision maker
chooses one of n decisions or ‘arms’ (e.g. treatments, job
schedules, manufacturing processes, etc) and receives some
feedback loss only for the chosen decision. In the most un-
adorned model, it is assumed that the cost for each decision
is independently sampled from some fixed underlying (and
unknown) distribution (that is different for each decision).
The goal of the decision maker is to minimize the average
loss over some time horizon. This stochastic multi-armed
bandit problem and a long line of successor bandit problems
have been extensively studied in the statistics community
(see, e.g., Auer et. al. [1]), with close attention paid to ob-
taining sharp convergence rates.

In our setting, we can model this pay-per-click auction
as a multi-armed bandit problem as follows: Say we have
n advertisers and say advertiser i is willing to pay up to
vi per click (the advertisers value, which, for now, say is
constant), then at each round the mechanism chooses which
advertiser to allocate to (i.e. it decides which arm to pull)



and then observes if that ad was clicked on. In this idealiza-
tion, the mechanism simply has one ‘slot’ to allocate each
round. If each advertiser had some click through ρi (the i.i.d.
probability that i’s ad will be clicked if displayed), then the
maximal revenue the mechanism could hope to achieve on
average would be maxi ρivi, if i actually paid out vi per
click. Hypothetically, let us assume that i actually paid out
vi per click, but the mechanism does not know ρi — the ex-
ploration/exploitation tradeoff is in estimating ρi accurately
vs. using these estimates to obtain revenue. Hence, if we run
one of the proficient bandit algorithms (say the upper con-
fidence algorithm of Auer et. al. [1]), then the mechanism
can guarantee that the difference between its revenue after
T rounds and the maximal possible revenue of T maxi ρivi
would be no more than O∗(

√
nT ) (this difference is known

as the ‘regret’). What this argument does not take into ac-
count is the strategic motivations of the advertisers. With
strategic considerations in mind, any mechanism only re-
ceives the advertisers purported value, their ‘bid’ bi (and so
the advertiser knows that i is only willing to pay up to bi).
Here, it is no longer clear which of our classic multi-armed
bandit algorithms are appropriate, since an advertiser (with
knowledge of the mechanism) might find it to be more prof-
itable to bid a value bi 6= vi.

The focus of this paper is to understand this exploration-
exploitation tradeoff in a strategic setting. The difficulty
now is that our bandit mechanism must also be truthful, so
as to disincentivize advertisers from manipulating the sys-
tem. We are particularly concerned with what is achievable,
under these constraints. Our results show that for pay-per-
click auctions this truthful restriction places fundamental
restrictions on what is statistically achievable — by this, we
mean that the truthful imposition alters the achievable sub-
linear rate of regret (which is a statistical convergence rate).
In contrast, an important body of research has examined
how truthfulness imposes computational limits (e.g. [10, 3,
11]).

1.1 Summary
The most immediate question is what is it reasonable to

compare to? Certainly, T maxi ρivi is not reasonable, since
even in a single shot (T = 1) setting when all the ρi’s are
known this revenue is not attainable, without knowledge of
the actual values. In such a setting, what is reasonable to
obtain is the revenue of the Vickrey auction (in expecta-
tion), which is smaxiρivi, where smax is the operator which
takes the second largest value. Hence, in a T round setting,
the natural revenue for the mechanism to seek to obtain is
T smaxiρivi. If ρi were known, it is straightforward to see
that such revenue could always be obtained (without knowl-
edge of the true values) with a truthful mechanism.

In this paper, we introduce the notion of truthful regret :
the difference between the mechanism’s revenue and T smaxiρivi.
This quantity is the natural generalization of the notion of
regret to a setting where truthfulness is imposed. Analogous
to the usual bandit setting, the goal of the mechanism is ob-
tain a sublinear (in T ) truthful regret, but the mechanism
now has the added constraint of being truthful (ensuring
that advertisers are not manipulating the mechanism, in a
rudimentary sense).

This paper sharply characterizes this truthful regret. Our
first result shows that a rather simple explore/exploit (truth-
ful) strategy achieves sublinear truthful regret. This straw-

man mechanism simply explores for a certain number of
rounds (charging nothing). After this exploration phase, this
mechanism exploits by allocating the slot to the estimated
highest revenue bidder for the remainder of the rounds (the
estimated highest revenue bidder is determined with the em-
pirical click through rate, which is estimated from the explo-
ration phase). This bidder is charged a quantity analogous
to the second price (the quantity charged is the second high-
est expected revenue), and this price is also determined by
empirical estimates of the click through rate. The truthful
regret achieved by mechanism is Õ(n1/3T 2/3).

The immediate question is can we do better? In the tradi-
tional bandit settings, such explicit explore/exploit schemes
perform unfavorably as compared to more sophisticated
schemes, which achieve regret of Õ(

√
nT ) (see [1])1. These

mechanisms typically do not make a distinction between ex-
ploiting or exploring — they implicitly make this tradeoff.
Roughly speaking, one of the difficulties in using these more
sophisticated algorithms for pay-per-click auctions is deter-
mining how to charge — truthful mechanisms often deter-
mine prices based on properties of the non-winning bidders
(thus sampling the highest bidder too often might lead to
not having enough accuracy for charging him appropriately).

The main technical result in this paper is a lower bound
which formalizes this intuition, showing that any truthful
mechanism must have truthful regret Ω(T 2/3). Roughly
speaking, the proof technique shows that any pay-per-click
auction must have the property that it behaves as an ‘ex-
plore/exploit’ algorithm, where when it explores, it must
charge zero, and when it exploits, it cannot use this infor-
mation for setting future prices.

The proof techniques go through the results on truthful
pricing (see [8, 5]), which (generally) characterize how to
truthfully price any allocation scheme. The additional con-
straint we use on this truthful pricing scheme is an infor-
mational one — the auction must only use the observed
clicks to determine the pricing. Thus, an allocation scheme
which is such that the corresponding pricing depends on
unobserved clicks cannot be implemented truthfully. We
expect our proof technique to be more generally useful for
other mechanisms, since information gathering in a strate-
gic setting is somewhat generic. Our technique shows how
to obtain restrictions on the pricing scheme, based on both
truthfulness and bandit feedback.

We characterize this loss in revenue (in comparison to a
bandit setting) as ‘the price of truthfulness’. This (multi-

plicative) gap between the regret achievable is Õ(T 1/6).

1.2 Related Work
Many papers consider problems that are very similar to

what we consider in this paper. The following are the most
closely related.

Gonen and Pavlov [4] consider the same problem as us,
but the goal is simply to maximize social welfare. They
work in a related framework, where the advertisers place
a single bid at the start of the auction, which stands for
the full T rounds. However, contrary to their claims, their
auction is not truthful, even for a single slot2. Babioff et.
al. [2] also consider this very problem, of maximizing social

1 The Õ notation ignores log factors.
2 For the allocation given by their auction, there is a unique
pricing that would make it truthful, but this price depends
on the clicks that are not observed by the auction (which is



welfare and prove results that are analogous to ours. They
also provide a characterization of truthful mechanisms in
this setting and prove matching upper and lower bounds on
the regret, which in their case is the difference in the social
welfare achieved by the mechanism and the optimum social
welfare.

Nazerzadeh et. al. [9] consider a similar problem, where
the goal is to design a truthful pay-per-acquisition auction
— the key difference being that the bidders report whether
an acquisition happened or not. Their auction employs an
explore/exploit approach similar to our upper bound. In this
work, they do not consider nor analyze the optimal achiev-
able rate. We expect that our techniques also imply lower
bounds on what is statistically achievable in their setting.

2. THE MODEL
Here we define the model for a single-slot pay-per-click

(PPC) auction. We consider a repeated auction, where a
single slot is auctioned in each of T time steps. There are n
advertisers, each of whom values a ‘click’, while the auction
can only assign ‘impressions’. The auction proceeds as fol-
lows. At each round t, each advertiser bids a value bti, which
is their purported value of i per click at time t. Then, the
auction assigns an impression to one of the n advertisers,
e.g. the auction decides which ad will be displayed. We let
xt be this allocation vector, and say xti = 1 iff the allocation
is to advertiser i at time t (and xtj = 0 for all j 6= i, since
only one advertiser is allocated). After this allocation, the
auction then observes the event cti which is equal to 1 if the
item was clicked on and 0 otherwise. Crucially, the auction
observes the click outcome only for allocated advertiser, i.e.
cti is observed iff xti = 1. Also at the end of the round, the
auction charges the advertiser i the amount pti only if i was
clicked. The revenue of the auction is A =

∑
i,t p

t
i.

Note the allocation xti is a function of the bids and the
observed clicks for τ < t. Let C = (cti : i = 1..n, t = 1..T )
be all click events, observed and otherwise. For the ease of
notation, we only include those arguments of xti that are rel-
evant for the discussion (for example, if we write xt(bti), then
we may be explicitly considering the functional dependence
on bti, but one should keep in mind the implicit dependence
on the other bids and the click history).

We assume advertiser i’s ‘true value’ for a click at time t
is vti , which is private information. Then i derives a benefit
of
∑
t v
t
ic
t
ix
t
i from the auction. Hence, the utility of i is∑

t(v
t
ic
t
ix
t
i − pti). An auction is truthful for a given sequence

C ∈ {0, 1}n×T , if bidding vti = bti is a dominant strategy for
all bidders: if for all possible bids of other advertisers {bt−i},
the utility of i is maximized when i bids bti = vti for all t.
As the auction depends on the advertisers previous bids, an
advertiser could potentially try to manipulate their current
bid in order to improve their future utility — this notion
of truthfulness prevents such manipulation. An auction is
always truthful if it is truthful for all C ∈ {0, 1}n×T .

We work in a stochastic setting where the event that cti =
1 is assumed to be i.i.d, with click probability ρi. This ρi
is commonly referred to as the click-through rate (CTR)
and is assumed to be constant throughout the auction. The
auction has no knowledge of the CTRs of the advertisers
prior to the auction.

what our lower bound techniques imply). In fact, this is one
of the insights used in proving our lower bounds.

Subject to the constraint of being always truthful, the goal
of the auction is to maximize its revenue. Define smaxi{ui}
to be the second largest element of a set of numbers {ui}i.
The benchmark we use to evaluate the revenue of the auction
is as follows:

Definition 1. Let

OPT =

T∑
t=1

smaxi{ρibti} .

It is the expected revenue of the Vickrey auction that knows
the true ρi’s. Let T-Regret := OPT −EC [A] be the expected
truthful regret of the auction.

We provide sharp upper and lower bounds for this quan-
tity.

We provide two lower bounds. The first is for the model
we have just specified, where the mechanism charges instan-
taneously. Our second lower bound is for the following static
bid model. The key differences in this model are

• the bidders have vti = vi for all t, and are only allowed
to submit one bid, at the start.

• the auction could decide the payments of the bidders
at the end of all the rounds.

Note that such auctions are more powerful and potentially
have a lower regret. We show an identical lower bound for
this case, which is thus a stronger statement. The proof
is more technically demanding but follows a similar line of
argument. Clearly, our upper bound holds in this model as
well.

The notion of always truthfulness is quite strong, since it
requires that the auction is truthful for every realization of
clicks. We consider a relaxation of this, which is truthful
with high probability. We say that an auction is truthful
with error probability ε if for any instance, the probability
(over the clicks) that the auction is not truthful is at most ε.
That is, the probability that bidding the true value is not a
dominating strategy (ex-post) for some bidder is at most ε.
Our lower bound holds even when the auction is allowed to
be truthful with a (small enough) constant error probability.
Some care is needed in defining the T-Regret for this case,
because the auction could charge arbitrarily high amounts
when it is not truthful, in order to make up for the loss in
revenue when it is. We thus define the T-Regret by consid-
ering the the expected revenue of the auction conditioned
on the event that the auction is truthful.

2.1 Technical Assumptions
We need certain technical assumptions for proving the

lower bound. We assume that the auction is scale invari-
ant, i.e., for all λ > 0, x(b) = x(λb). Although this seems
like a natural assumption and most known algorithms for
the multi-armed problem satisfy it, it is not clear if such an
assumption is necessary for the lower bound. We also as-
sume that the auction always allocates all the impressions.
Finally, we state a non-degeneracy assumption that we use
to prove the lower bound in the non-static model. An auc-
tion is said to be non-degenerate if for all bids bti, there exists
a sufficiently small interval I of positive length containing bti
such that for all other bids, clicks and time t′, replacing bti
with any b ∈ I does not change xt

′
i .



3. MAIN RESULTS
Our first result is on the existence of an algorithm with

sublinear (in T ) truthful regret.

Theorem 2. Let bmax = maxi,t b
t
i. There exists an al-

ways truthful PPC auction with

T-Regret = O(bmaxn
1/3T 2/3

√
log(nT )).

In the next section, we specify this mechanism and proof.
The mechanism is essentially the strawman auction, which
first explores for a certain number of rounds and then ex-
ploits. Here, we show such an auction is also always truthful.

For the n-arm multi-armed bandit mechanism, such al-
gorithms typically also achieve a regret of the same order.
However, in the n-arm bandit setting, there are sharper al-
gorithms achieving regret of Õ(

√
nT ) (see for example [1]).

Our second result (our main technical contribution) shows
that such an improvement is not possible.

We first show a lower bound for the case when the auc-
tion is required to charge instantaneously, and with the ad-
ditional non-degeneracy assumption.

Theorem 3. For every non-degenerate, scale invariant
and always truthful PPC auction (with n = 2), there exists
a set of bids bounded in [0, 1] and ρi such that T-Regret =

Ω(T 2/3).

In comparison to the multi-armed bandit problem, the re-
quirement of truthfulness degrades the achievable statistical
rate. In particular, the regret is larger by an additional T 1/6

factor, which we term ‘price of truthfulness’.
Even though this theorem is subsumed by the stronger

result below, we present its proof because it is simpler, and
introduces many of the concepts needed for the following
result.

In Section 6 we extend this lower bound to the static bid
case, where the bidders submit a single value at the start,
and the auction only charges at the end of the T rounds
(rather than instantaneously). Also we don’t need the non-
degeneracy assumption and the auction is allowed to be
truthful with a constant error probability.

Theorem 4. There exists a constant ε > 0 such that for
every scale invariant PPC auction (with n = 2) in the static
bid model that is truthful with error probability ε, there exists
a set of bids bounded in [0, 1] and ρi such that T-Regret =

Ω(T 2/3).

The lower bound holds for randomized mechanisms that
are always truthful (or with small error probability over the
clicks). This is an easy application of Yao’s min-max theo-
rem.

4. UPPER BOUND ANALYSIS
The algorithm is quite simple. For the first τ steps, the

auction explores. By this we mean that the algorithm allo-
cates the item to each bidder for bτ/nc steps (and it does
so non-adaptively in some deterministic order). All prices
are 0 during this exploration phase. After this exploration
phase is over, let ρ̂i be the empirical estimate of the click
through rate. With probability greater than 1− δ, we have
that the following upper bound holds for all i:

ρi ≤ ρ̂i +

√
2
⌊n
τ

⌋
log

n

δ
:= ρ̂+

i

where we have defined ρ̂+
i to be this upper bound. For the

remainder of the timesteps, i.e. for t > τ (which is the
exploitation phase), the auction allocates the item to the
bidder i∗ at time t which maximizes ρ̂+

i b
t
i, i.e. the allocation

is at time t is

xti∗ = 1 where i∗ = arg max
i
ρ̂+
i b

t
i

and the price charged to i∗ at time t is:

pti =
smaxiρ̂

+
i b

t
i

ρ̂+
i∗

where smax is the second maximum operator.
It is straightforward to see that the auction is instanta-

neously truthful (i.e. an advertiser’s revenue at any given
round cannot be improved by changing the bid at that round).
However, the proof also consists of showing that the auc-
tion is truthful over the T steps (in addition to proving the
claimed regret bound).

Proof. We first provide the proof of truthfulness. Con-
sider a set of positive weights wi. First, note that we could
construct a truthful auction with this vector wi in the follow-
ing manner: let the winner at time t be i∗ = arg maxi wib

t
i

and charge i∗ the amount
smaxiwib

t
i

wi∗
this time. It is straight-

forward to verify that this auction is truthful for any click
sequence and for any duration T . Now observe that the
weights used by the auction are wi = ρ+

i which are not a
function of the bids. Hence, the auction is truthful since
during the exploitation phase the auction is truthful (for
any set of weights).

Now we bound the regret of the auction. Note that for
all t after the exploration phase (all t > τ), E

[
cti∗
]

= ρi∗ .

Hence, the expected revenue at time t is just
smaxiρ̂

+
i b

t
i

ρ̂+
i∗

ρi∗ .

First note by construction,

smaxiρ̂
+
i b

t
i

ρ̂+
i∗

≤ bti∗ ≤ bmax

and also note that with probability greater than 1− δ:

smaxiρib
t
i

smaxiρ̂
+
i b

t
i

≤ 1

since ρi ≤ ρ̂+
i (with probability greater than 1 − δ). Using

these facts, the instantaneous regret is bounded follows:

smaxiρib
t
i −

smaxiρ̂
+
i b

t
i

ρ̂+
i∗

ρi∗

=
smaxiρ̂

+
i b

t
i

ρ̂+
i∗

(
smaxiρib

t
i

smaxiρ̂
+
i b

t
i

ρ̂+
i∗ − ρi∗

)
≤ bmax

(
smaxiρib

t
i

smaxiρ̂
+
i b

t
i

ρ̂+
i∗ − ρi∗

)
≤ bmax

(
ρ̂+
i∗ − ρi∗

)
≤ bmax

√
2
n

τ
log

n

δ
.

Hence, since there are T − τ exploitation phases and τ ex-
ploration phases (with no revenue), we have shown that the
expected regret is:

T-Regret ≤ bmax

(
(T − τ)

√
2
n

τ
log

n

δ
+ τ + δT

)



where the δT term comes from the failure probability. Choos-
ing δ = 1/T and τ = n1/3T 2/3

√
log (nT ) completes the

proof.

5. LOWER BOUND

5.1 Constraints from Truthful Pricing
First, we characterize the restriction imposed on the allo-

cation function by truthfulness. A theorem from Myerson [8]
(also see [5]) for characterizing truthful auctions will be ex-
tensively used. The characterization in this theorem is for
the case where each bidder submits a single bid, but in our
model an advertiser submits a bid for each time step. How-
ever, the characterization still holds since the advertiser’s
value could remain the same over all time periods and one
strategy he could take is to submit the same bid (which
could be different from his true value) for all time steps. An
auction that is truthful w.r.t all possible strategies is defi-
nitely truthful w.r.t these specific strategies. In this case, we
can apply the characterization for the cumulative clicks and
prices a bidder gets. Applying this theorem to the cumula-
tive prices charged over the auction leads to the following
pricing restriction:

Theorem 5. Truthful pricing rule: Fix a click se-
quence. Let yi =

∑
t x

t
ic
t
i and let pi =

∑
t p
t
i. If an auction

x (which implies y) is truthful then

1. yi is monotonically increasing in bi

2. the price pi charged to i is exactly

pi(b) = biyi(b)−
∫ bi

z=0

yi(z, b−i)dz.

Also, let yti = xtic
t
i. Also define

pti(b) = biy
t
i(b)−

∫ bi

z=0

yti(z, b−i)dz,

and note that pi =
∑
t p
t
i. It is also straightforward to see

that the truthful pricing rule also implies that these must
be the instantaneous prices, and that instantaneously, the xti
must be monotonic in bti. To see this, note that it could be
the case that the current round is effectively the advertiser’s
last round (say this advertiser’s values for the remaining
rounds of the auction are zero). Hence, every round of the
auctions is truthful.

Since the mechanism is always truthful, the allocation
function has to be such that the prices can always be cal-
culated exactly (with the observed clicks). Using this, our
proof shows that the allocation function only has functional
dependence on the clicks observed during certain time peri-
ods that are ‘non-competitive’.

5.2 Competitive Pricing
Recall, we only include those arguments of xti that are rel-

evant for the discussion (for example, if we write xt(bi, b−i),
then we may be explicitly considering the functional depen-
dence on bi and b−i, but one should keep in mind the implicit
dependence on the click history). From now on, we assume
that there are only 2 bidders, 1 and 2. We also now restrict
the bids to be constant for the duration of the auction.

A competitive round for bidder 1 is one in which there
exists a high enough bid b1 such that 1 can win. More
formally,

Definition 6. Say that a time τ is competitive (w.r.t
bidder 1) if for all b2, there exist b1 so that xτ1(b1, b2) = 1.

We also consider the functional dependence on clicks:

Definition 7. Say that the allocation xt1 depends on cτ2
if there exist b1, b2 such that xt1(b1, b2, c

τ
2) 6= xt1(b1, b2, 1−cτ2).

Note that in order for xt1 to have a functional dependence on
cτ2 , the auction must observe cτ2 , in which case xτ2(b1, b2) = 1.

Lemma 8. If τ is competitive w.r.t bidder 1, then xt1 does
not depend on cτ2 .

Proof. Say τ is competitive and xt1 depends on cτ2 , for
the bids b1, b2. Hence, the auction must observe cτ2 , so
clearly xτ2(b1, b2) = 1. Since τ is competitive, there exist
b′1 > b1 so that xτ1(b′1, b2) = 1.

Note that, since the auction is instantaneously truthful,
xt1 is monotone. Also, the mechanism has to calculate pt1
(using only the observed clicks). Now we will argue that
pt1(b′1, b2, c

τ
2) 6= pt1(b′1, b2, 1 − cτ2), which is a contradiction,

since the mechanism does not observe cτ2 at bids b′1, b2, as
xτ2(b′1, b2) = 0.

Consider the case xt1(b1, b2, c
τ
2) = 1 and xt1(b1, b2, 1−cτ2) =

0. Also, by monotonicity, we have that xt1(b′1, b2, c
τ
2) = 1.

We must also have xt1(b′1, b2, c
τ
2) = xt1(b′1, b2, 1 − cτ2) = 1

since the auction does not observe cτ2 at these bids, i.e.
xτ2(b′1, b2) = 0. Note that since xt1 ∈ {0, 1}, by the truth-
ful pricing rule we have for all bids b, pt1(b, b2) = inf{b′ ≤
b : xt1(b′, b2) = 1}. Hence, pt1(b′1, b2, c

τ
2) ≤ b1. Similarly,

xt1(b1, b2, 1 − cτ2) = 0 and xt1(b′1, b2, 1 − cτ2) = 1, so we also
have that pt1(b′1, b2, 1−cτ2) ≥ b1. Because of non-degeneracy,
one of these two inequalities must be strict, because of which
we have that pt1(b′1, b2, c

τ
2) < pt1(b′1, b2, 1−cτ2), which is a con-

tradiction. The other case is identical (xt1(b1, b2, c
τ
2) = 0 and

xt1(b1, b2, 1− cτ2) = 1), and we are done.

Corollary 9. If τ is not competitive w.r.t. bidder 1,
then pτ1 ≡ pτ2 ≡ 0.

Proof. Since τ is not competitive, ∃b2 : ∀b1, xτ1(b1, b2) =
0. By scale invariance, it follows that ∀b′1b′2, xτ1(b′1, b

′
2) =

xτ1(b′1b2/b
′
2, b2) = 0. Thus pτ1 ≡ 0.

If xτ2(b1, b2) = 0, then pτ2(b1, b2) = 0. If xτ2(b1, b2) = 1,
then since τ is not competitive, for all b′1 > b1, xτ2(b′1, b2) = 1.
Because of scale invariance, it follows that for all 0 < b′2 ≤ b2,
xτ2(b1, b

′
2) = xτ2(b1b2/b

′
2, b2) = 1. Now pτ2(b1, b2) = 0 by

truthful pricing.

Proof of Theorem 3. We consider two instances. In
Instance 1, we have (ρ1, b1) = (1, 1/2) and (ρ2, b2) = (1/2 +
δ, 1). In Instance 2, again we have (ρ1, b1) = (1, 1/2) but

now have (ρ2, b2) = (1/2− δ, 1). We set δ = T−1/3. We will

show that the regret of any truthful mechanism is Ω(T 2/3)
for either of the two instances.

Because of Corollary 9, the number of non-competitive
rounds is o(T 2/3) with probability 1 − o(1), else our T-

Regret would be Ω(T 2/3). Hence it is enough to prove that
given that the number of non-competitive rounds, say n, is
o(T 2/3), the T-Regret is Ω(T 2/3).

Recall that T-Regret = OPT − E [p1 + p2], and pi(b) =

biyi(b)−
∫ bi
z=0

yi(z, b−i)dz. We will show that

OPT − E [y1b1 + y2b2] = Ω(T 2/3),



which is enough since the integrals are positive3. Note that
Ect

2
[yt2|c12 . . . ct−1

2 ] = ρ2x
t
2. Thus Ec12...ct

2
[yt2] = ρ2Ec12...ct

2
[xt2].

Hence it is enough to argue thatOPT−EC [ρ1b1x1+ρ2b2x2] =

Ω(T 2/3). Call this latter quantity for a particular C, the loss
for that C.

Claim 10. For all click sequences C, if x1(1/2, 1, C) ≥
T/2 (resp. x1(1/2, 1, C) ≤ T/2) then the loss for C is at
least δT/2 for Instance 1 (resp. Instance 2).

Proof. Consider Instance 1 and suppose x1(1/2, 1, C) ≥
T/2. Then x2 ≤ T/2. Therefore ρ1b1x1 + ρ2b2x2 = x1/2 +
(1/2 + δ)x2 = 1/2(x1 + x2) + δx2 ≤ T/2 + δT/2 = (1/2 +
δ)T − δT/2 = OPT − δT/2. Hence loss for C is ≥ δT/2.
The case when x1(1/2, 1, C) ≤ T/2 is similar.

Let χ be a function of C that is 1 if the loss for that click
sequence is ≥ δT/2 for Instance 1, and is 0 otherwise (loss
is ≥ δT/2 for Instance 2, as guaranteed by Claim 10). Since
χ only depends on x1, which in turn only depends on the
clicks in the non-competitive rounds (Lemma 8), χ can be
represented as a boolean decision tree of depth n = o(1/δ2).
We now prove a technical lemma which shows that such
a function can essentially not distinguish between the two
instances.

Lemma 11. Let P1 and P2 be probability distributions on
{0, 1}T generated by i.i.d samples w.p. 1/2 + δ and 1/2− δ
respectively. Then for all functions χ : {0, 1}T → {0, 1} that
can be represented as decision trees of depth n = o(1/δ2),
either

∑
c∈{0,1}T P1(c)χ(c) or

∑
c∈{0,1}T P2(c)(1 − χ(c)) is

Ω(1).

Proof. Assume that the decision tree is a complete bi-
nary tree. Each leaf of the tree is represented by a string
x ∈ {0, 1}n. Let χ(x) be the output of the decision tree at
leaf x. Then for any probability distribution on c ∈ {0, 1}T∑

c∈{0,1}T
P(c)χ(c) =

∑
x∈{0,1}n

P(x)χ(x)

where P(x) is the probability that decision tree reaches leaf

x. P1(x) = (1/2+δ)|x|(1/2−δ)n−|x| where |x| is the number

of 1’s in x. Similarly P2(x) = (1/2 − δ)|x|(1/2 + δ)n−|x|.
P1(x) ≥ P2(x) if and only if |x| ≥ n/2. P1(x)χ(x)+P2(x)(1−
χ(x)) ≥ min{P1(x),P2(x)} = P2(x) if |x| ≥ n/2. Therefore∑
x∈{0,1}n

P1(x)χ(x) + P2(x)(1− χ(x)) ≥
∑

x∈{0,1}n:|x|≥n/2

P2(x)

= P2[|x| ≥ n/2]

= Ω(1).

This completes the proof of the lemma.

As mentioned earlier, χ can be represented as a decision
tree with depth o(1/δ2), and so we can apply Lemma 11 to
χ. From Lemma 11, either

∑
c∈{0,1}n P1(c)χ(c) = Ω(1) or∑

c∈{0,1}n P2(c)(1 − χ(c)) = Ω(1). If the former holds, this

says that the probability that the loss is Ω(δT )=Ω(T 2/3) for

Instance 1 is Ω(1). Thus the expected loss is Ω(T 2/3). The

other case implies an expected loss of Ω(T 2/3) on Instance
2.

3 In fact, we can also show that the integrals themselves are
Ω(T 2/3), with a slightly different argument.

6. LOWER BOUND FOR THE STRONGER
MODEL

In this section, we prove a stronger version of the lower
bound. The key differences in the setting we consider here
are that

• the auction could charge at the end of all the rounds,
and

• the bidders are only allowed to submit one bid, at the
start.

Note that such auctions are more powerful and potentially
have a lower regret. We show, however, that the regret is still
Ω(T 2/3). Our proof also works if the notion of truthfulness
is relaxed in the following sense: the auction is allowed to
be non-truthful with a (small) constant probability, where
the probability is over the realization of clicks. This allows
the auction to be non-truthful for some realizations of clicks,
given that such realizations happen with a small probability.

As before, we consider two instances, where ρ1 = v2 = 1
in both the instances (where vi is the value of i). Instance
I1 is when ρ2 = 1/2 + δ = v1 and Instance I2 is when

ρ2 = 1/2− δ = v1, where δ = T−1/3. We will show that the

regret of any truthful mechanism is Ω(T 2/3) for either of the
two instances.

Recall that T-Regret = OPT − EC [p1(v) + p2(v)], where
pi(v) = viyi(v)−

∫ vi

z=0
yi(z,v−i)dz. It will be easier to work

with a related quantity, which we call the loss, that is a
function of the click sequence, C, the values v, the true
CTRs and the allocation function. We will drop some of
the arguments when it is clear from context. Let qi(v) =
vixi(v)−

∫ vi

z=0
xi(z,v−i)dz. Define loss(C) := OPT−(ρ1q1+

ρ2q2), keeping in mind that q1 and q2 are also functions of C.

Also say that C is bad for an instance if loss(C) is Ω(T 2/3).

Lemma 12. If the probability that C is bad for an instance
is Ω(1), where the probability is taken over the clicks in that

instance, then the regret for that instance is Ω(T 2/3).

Proof. Note that4 Ect
2
[yt2|c12 . . . ct−1

2 ] = ρ2x
t
2, and xt2 de-

pends on c12 . . . c
t−1
2 but not on ct2. Thus

Ec12...ct
2
[yt2] = ρ2E

c12...c
t−1
2

[xt2],

and EC [pi(b)] = EC [ρiqi(b)]. Therefore T-Regret = OPT −
EC [ρ1q1(b) + ρ2q2(b)] = EC [loss(C)].

Finally, for both I1 and I2, and for all C, loss(C) ≥ 0.
This is because for both I1 and I2, OPT = ρ1b1T = ρ2b2T .
ρ1q1 + ρ2q2 ≤ ρ1b1x1 + ρ2b2x2 = OPT

T
(x1 + x2) ≤ OPT .

Thus, if the loss is Ω(T 2/3) with probability Ω(1), then the

T-Regret is Ω(T 2/3).

As in the lower bound proof of Theorem 3, we relate the
inability of the mechanism to extract profit to the inability
of a binary decision tree with small depth to distinguish
between two probability distributions that are close to each
other.

Lemma 13. Suppose there exists a boolean function of the
click sequence C, χ : {0, 1}T → {0, 1}, such that

4 We only need to consider ct2’s, since in our instances, ρ1 =
1. Also, therefore, xt1 = yt1.



• χ can be represented as a decision tree T .

• If the depth of T on input C is Ω(T 2/3) then C is bad
for both I1 and I2.

• If χ(C) = 1, then C is bad for I1, and if χ(C) = 0,
then C is bad for I2.

Then C is bad for either I1 or I2 with probability Ω(1).

Proof. Let P1 and P2 be probability distributions on
{0, 1}T generated by i.i.d samples w.p. 1/2+δ and 1/2−δ re-

spectively (as in Lemma 11). If the depth of T was o(T 2/3),
then we could just apply Lemma 11.

∑
C∈{0,1}T P1(C)χ(C)

(resp.
∑
C∈{0,1}T P2(C)(1−χ(C))) is the same as the prob-

ability that C is bad for I1 (and resp. for I2). From the
lemma, we can conclude that either of these probabilities is
Ω(1), and we are done. The problem is that for some clicks,

the depth of T could be Ω(T 2/3). Since all such clicks are
bad for both instances, we may assume that both P1 and P2

of such clicks is o(1). We can apply Lemma 11 to the tree

obtained by “pruning” T so that its depth is o(T 2/3), and
the same conclusion would still hold.

From the above two lemmas, it now remains to construct
χ as described.
Construction of T : In particular, we want that if χ(C) =
1, then C is bad for I1, and if χ(C) = 0, then C is bad for I2.
Further, we also want χ to be a decision tree of small depth.
Such a construction was easy for the proof of Theorem 3, due
to the additional structure available there. However, here
the construction is more involved. We first construct the
tree T , and then define χ by defining the values at the leaves
of T . A slightly counter-intuitive nature of the construction
is that T does not depend on what the mechanism does for
I1 or I2, but rather at a slightly different pair of bids.

Let b+ = 1/2 + δ and b− = 1/2 − δ be shorthand nota-
tions for convenience. We first construct the decision tree
T by looking at which clicks the auction observes when
b1 = b+(1 + λ) and b2 = 1, where λ is some constant > 0.

A binary decision tree represents a boolean function as
follows. Every node of the tree corresponds to a variable.
Start at the root node. If the value of the variable at the root
node is 1, continue with the left child, otherwise continue
with the right child. Recursively repeat the above until you
reach a leaf. Each leaf node has a value 0/1. This is the value
of the function. We label the nodes of T by the variable ct2
with t ∈ [T ], indicating that the impression in round t was
allocated to bidder 2, and ct2 was observed. Let the root of
T be the first t such that xt2(b+(1 + λ), 1) = 1. Note that
this has to be independent of C since the auction does not
observe any clicks until it assigns an impression to advertiser
2. Recursively define for each node t in the tree, the left
(resp. right) child to be the next time period t′ such that

xt
′

2 (b+(1 + λ), 1) = 1, given that ct2 = 0 (resp. ct2 = 1).
Again, as before, note that this is well defined, since t′ only
depends on the those ct2’s that lie on the path from the root
to t, as these are all the clicks that the auction observes. For
a given C, let S = {t : xt2(b+(1 + λ), 1) = 1} be the set of
nodes in the path from the root to the leaf the decision tree
ends in, on input C.

We introduce the following notation:

A1[l, u](b2) =

∫ u

l

x1(z, b2)dz,

and similarly A2[l, u](b1) =

∫ u

l

x2(b1, z)dz.

Also , define Ac1[l, u](b2) =

∫ u

l

x2(z, b2)dz.

We now show that T satisfies the second condition required
in Lemma 13.

Lemma 14. If the depth of T is Ω(T 2/3) for any C, then
C is bad for both instances I1 and I2

Proof. Note that loss(C) = OPT − (ρ1b1x1 + ρ2b2x2)
+ρ1A1[0, b1](b2)+ρ2A2[0, b2](b1) which is at least ρ1A1[0, b1](b2)
+ρ2A2[0, b2](b1).

Consider I1. If |S| ≥ Ω(T 2/3), then x2(b+(1 + λ), 1) ≥
Ω(T 2/3). By scale invariance, x2(b+, 1/(1 + λ)) ≥ Ω(T 2/3).
Thus, loss(C) ≥ ρ2A2[0, 1](b+) ≥ ρ2A2[1/(1 + λ), 1](b+).
Since x2 is monotone, this is at least ρ2x2(b+, 1/(1+λ))(1−
1/(1 + λ)) ≥ Ω(T 2/3). The proof for I2 is similar.

Construction of χ: Finally we are ready to define χ. Re-
call that the decision tree T represents χ, so we need to
define the values at the leaf nodes of T . This is equivalent
to saying that χ depends only on (ct2 : t ∈ S), where S is
the times at which the mechanism allocates to bidder 2. In
other words, the function χ is such that if C and C′ agree on
S, then χ(C) = χ(C′). Further, we want that if χ(C) = 1,
then C is bad for I1, and if χ(C) = 0, then C is bad for I2.
Actually, we don’t construct χ, but show that there exists
a function χ with the properties required. It is easy to see
that the existence of χ as required follows from the following
lemma.

Lemma 15. If C and another click sequence C′ agree on
S, then either they are both bad for I1, or they are both bad
for I2.

We first obtain lower bounds on loss that will help us
show that a particular C is bad for some instance.

Lemma 16. For instance I1,

loss(C) ≥ A1[0, b−](1) +A1[b−, b+](1) +

1/(1 + λ)2Ac1[b+, b+(1 + λ)](1).

For instance I2,

loss(C) ≥ A1[0, b−](1) +

(b−/b+(1 + λ))2
(
Ac1[b−, b+](1) +Ac1[b+, b+(1 + λ)](1)

)
.

Proof. Consider I1.

loss(C) ≥ A1[0, b−](1) +A1[b−, b+](1) + b+A2[0, 1](b+).

By scale invariance,

A2[0, 1](b+) =

∫ 1

0

x2(b+, z)dz =

∫ 1

0

x2(b+/z, 1)dz.

By change of variables, t = b+/z, it is equal to∫ ∞
b+

b+x2(t, 1)/t2dt ≥
∫ b+(1+λ)

b+
b+x2(t, 1)/t2dt

≥ 1/(b+(1 + λ)2)

∫ b+(1+λ)

b+
x2(t, 1)dt

= 1/(b+(1 + λ)2)Ac1[b+, b+(1 + λ)](1),



The bound as required follows.
Now consider I2. As before,

loss ≥ A1[0, b−](1) + b−A2[0, 1](b−).

Again, as before, by scale invariance and change of variables,∫ 1

0

x2(b−, z)dz ≥ b−/(b+(1 + λ))2Ac1[b−, b+(1 + λ)](1).

The lemma follows.

Proof of of Lemma 15. Now suppose C and C′ agree
on S, where S is the set of clicks (for bidder 2) observed
when b1 = b+(1 + λ) and b2 = 1. Hence, x1(b+(1 + λ), 1)
and p1(b+(1 + λ), 1) should be the same for both C and C′.
This implies that A1[0, b+(1+λ)](1) = b1x1−p1 is the same
for both C and C′.

We consider two cases.
Case 1: Suppose either A1[0, b−](1) or Ac1[b+, b+(1 +λ)](1)

is Ω(T 2/3) for either C or C′, say for C. Then from Lemma
16 C is bad for both I1 and I2. Also, since x1 + x2 = T , we
have (A1 + Ac1)[b−, b+](1) = T (b+ − b−) ≥ Ω(T 2/3). This,
along with Lemma 16 implies that C′ is bad for either I1 or
I2. Thus C and C′ are simultaneously bad for either I1 or
I2.
Case 2: Instead, suppose A1[0, b−](1) and Ac1[b+, b+(1 +

λ)](1) are o(T 2/3) for both C and C′. We now have that

|A1[0, b−](C)−A1[0, b−](C′)| = o(T 2/3), and |A1[b+, b+(1 +

λ)](C) − A1[b+, b+(1 + λ)](C′)| = o(T 2/3). Using the fact
that if x+y+z = x′+y′+z′, then |x−x′| ≤ |y−y′|+|z−z′|,
we get that |A1[b−, b+](C) − A1[b−, b+](C′)| = o(T 2/3). As

in case 1, x1 + x2 = T ⇒ (A1 + Ac1)[b−, b+](1) ≥ Ω(T 2/3).
Thus from Lemma 16 C and C′ are both bad for either I1
or I2.

The lower bound holds for auctions that are truthful with
error probability ε. This is because C is bad for an instance
with a constant probability. If ε is small enough, then condi-
tioned on the event that the auction is truthful, C will still
be bad for the same instance with a constant probability.
This completes the proof of Theorem 4.

7. EXTENSIONS AND OPEN PROBLEMS
Note that our algorithm has known “free rounds” where

the mechanism assigns impressions for free. Such free rounds
are necessary, as was shown in the lower bound proof. An
important concern is that advertisers may try to take ad-
vantage of such free rounds, by bidding only during them.
However such gaming is easily defeated by randomizing over
the choice of free rounds.

A natural question is if our results extend to the case of
multiple slots. While the lower bounds obviously apply with
multiple slots as well, the upper bounds also generalize to
multiple slots, under certain assumptions. Assume that the
CTR decays as we go down the slots, and the decay rates
are known. That is, the CTR of advertiser i in slot j is
θjρi where for all j, θj < 1 is an input to the auction. In
this case, the notion of regret is to compare the revenue of
the auction to the VCG revenue given the true CTRs. We
can show that the regret still grows as O(T 2/3). Extensions
to include other models of CTR decay and other aspects of
sponsored search such as budget constraints are non trivial
and are left as open problems.

We note that while our lower bound matches the upper
bound in terms of T , the lower bound does not quantify
the n dependence, as we have assumed that the number of
bidders is n = 2. Our upper bound grows as n1/3, ignoring
log terms. We conjecture that our upper bound is tight even
for the dependence on n

An interesting open problem is to prove similar lower
bounds for mechanisms that are only truthful in expectation
over the probability of clicks. However, truthful in expec-
tation auctions seem to be structurally much more compli-
cated than auctions that are truthful with high probability,
and substantial new techniques might be needed for such
bounds. There are also randomized mechanisms that are
truthful in expectation over the random choices made by
the mechanism. While there is an equivalence between such
mechanisms and randomized mechanisms that are always
truthful (again over the random choices of the mechanism)
for digital goods [7], it is not clear if such equivalence holds
in this case.

Another interesting open question is if there are mecha-
nisms with a smaller regret for which truth-telling is a Nash
equilibrium, rather than a dominant strategy.
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