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ABSTRACT
We introduce new online models for two important aspects
of modern financial markets: Volume Weighted Average Price
trading and limit order books. We provide an extensive
study of competitive algorithms in these models and relate
them to earlier online algorithms for stock trading.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous; J.4 [Social and Behavioral Sciences]:
Economics

General Terms
Algorithms, Economics

Keywords
Online Trading, Competitive Analysis, VWAP

1. INTRODUCTION
While popular images of Wall Street often depict swash-

buckling traders boldly making large gambles on just their
market intuitions, the vast majority of trading is actually
considerably more technical and constrained. The constraints
often derive from a complex combination of business, reg-
ulatory and institutional issues, and result in certain kinds
of “standard” trading strategies or criteria that invite algo-
rithmic analysis.

One of the most common activities in modern financial
markets is known as Volume Weighted Average Price, or
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VWAP, trading. Informally, the VWAP of a stock over a
specified market period is simply the average price paid per
share during that period, so the price of each transaction in
the market is weighted by its volume. In VWAP trading,
one attempts to buy or sell a fixed number of shares at a
price that closely tracks the VWAP.

Very large institutional trades constitute one of the main
motivations behind VWAP activity. A typical scenario goes
as follows. Suppose a very large mutual fund holds 3% of
the outstanding shares of a large, publicly traded company
— a huge fraction of the shares — and that this fund’s man-
ager decides he would like to reduce this holding to 2% over
a 1-month period. (Such a decision might be forced by the
fund’s own regulations or other considerations.) Typically,
such a fund manager would be unqualified to sell such a large
number of shares in the open market — it requires a profes-
sional broker to intelligently break the trade up over time,
and possibly over multiple exchanges, in order to minimize
the market impact of such a sizable transaction. Thus, the
fund manager would approach brokerages for help in selling
the 1%.

The brokerage will typically alleviate the fund manager’s
problem immediately by simply buying the shares directly
from the fund manager, and then selling them off later —
but what price should the brokerage pay the fund manager?
Paying the price on the day of the sale is too risky for the
brokerage, as they need to sell the shares themselves over an
extended period, and events beyond their control (such as
wars) could cause the price to fall dramatically. The usual
answer is that the brokerage offers to buy the shares from
the fund manager at a per-share price tied to the VWAP
over some future period — in our example, the brokerage
might offer to buy the 1% at a per-share price of the com-
ing month’s VWAP minus 1 cent. The brokerage now has a
very clean challenge: by selling the shares themselves over
the next month in a way that exactly matches the VWAP,
a penny per share is earned in profits. If they can beat the
VWAP by a penny, they make two cents per share. Such
small-margin, high-volume profits can be extremely lucra-
tive for a large brokerage. The importance of the VWAP
has led to many automated VWAP trading algorithms — in-
deed, every major brokerage has at least one ”VWAP box”,
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OWT Θ(log(R)) (From[3]) O(log(R) log(N)) 2E(Pbins
maxprice)

2(1 + ε)E(Pbins
maxprice) for ε-approx of Pbins

maxprice

Θ(log(Q)) (same as above plus...)
VWAP Θ(log(R)) O(log(R) log(N)) (from above) 2E(Pbins

vol )
Ω(Q) fixed schedule O(log(Q)) for large N (1 + ε)2E(Pbins

vol ) for ε-approx. of Pbins
vol

1 for volume in [N, QN ]

Figure 1: The table summarizes the results presented in this paper. The rows represent results for either the OWT

or VWAP criterion. The columns represent which model we are working in. The entry in the table is the competitive

ratio between our algorithm and an optimal algorithm, and the closer the ratio is to 1 the better. The parameter R

represents a bound on the maximum to the minimum price fluctuation and the parameter Q represents a bound on the

maximum to minimum volume fluctuation in the respective model. (See Section 4 for a description of the Macroscopic

Distribution Model.) All the results for the OWT trading criterion (which is a stronger criterion) directly translate

to the VWAP criterion. However, in the VWAP setting, considering a restriction on the maximum to the minimum

volume fluctuation Q, leads to an additional class of results which depends on Q.

and some small companies focus exclusively on proprietary
VWAP trading technology.

In this paper, we provide the first study of VWAP trading
algorithms in an online, competitive ratio setting. We first
formalize the VWAP trading problem in a basic online model
we call the price-volume model, which can be viewed as a
generalization of previous theoretical online trading models
incorporating market volume information. In this model, we
provide VWAP algorithms and competitive ratios, and com-
pare this setting with the one-way trading (OWT) problem
studied in [3].

Our most interesting results, however, examine the VWAP
trading problem in a new online trading model capturing the
important recent phenomenon of limit order books in finan-
cial markets. Briefly, a limit buy or sell order specifies both
the number of shares and the desired price, and will only
be executed if there is a matching party on the opposing
side, according to a well-defined matching procedure used
by all the major exchanges. While limit order books (the
list of limit orders awaiting possible future execution) have
existed since the dawn of equity exchanges, only very re-
cently have these books become visible to traders in real
time, thus opening the way to trading algorithms of all vari-
eties that attempt to exploit this rich market microstructure
data. Such data and algorithms are a topic of great current
interest on Wall Street [4].

We thus introduce a new online trading model incorporat-
ing limit order books, and examine both the one-way and
VWAP trading problems in it. Our results are summarized
in Figure 1 (see the caption for a summary).

2. THE PRICE-VOLUME TRADING MODEL
We now present a trading model which includes both price

and volume information about the sequence of trades. While
this model is a generalization of previous formalisms for on-
line trading, it makes an infinite liquidity assumption which
fails to model the negative market impact that trading a
large number of shares typically has. This will be addressed
in the order book model studied in the next section.

A note on terminology: throughout the paper (unless oth-
erwise specified), we shall use the term “market” to describe
all activity or orders other than those of the algorithm un-
der consideration. The setting we consider can be viewed as
a game between our algorithm and the market.

2.1 The Model
In the price-volume trading model , we assume that the

intraday trading activity in a given stock is summarized by
a discrete sequence of price and volume pairs (pt, vt) for
t = 1, . . . , T . Here t = 0 corresponds to the day’s mar-
ket open, and t = T to the close. While there is nothing
technically special about the time horizon of a single day, it
is particularly consistent with limit order book trading on
Wall Street. The pair (pt, vt) represents the fact that a total
of vt shares were traded at an (average) price per share pt

in the market between time t − 1 and t. Realistically, we
should imagine the number of intervals T being reasonably
large, so that it is sensible to assign a common approximate
price to all shares traded within an interval.

In the price-volume model, we shall make an infinite liq-
uidity assumption for our trading algorithms. More pre-
cisely, in this online model, we see the price-volume sequence
one pair at a time. Following the observation of (pt, vt),
we are permitted to sell any (possibly fractional) number
of shares nt at the price pt. Let us assume that our goal
is to sell N shares over the course of the day. Hence, at
each time, we must select a (possibly fractional) number of
shares nt to sell at price pt, subject to the global constraint∑T

t=1 nt = N . It is thus assumed that if we have “left over”
shares to sell after time T − 1, we are forced to sell them at
the closing price of the market — that is, nT = N−∑T−1

t=1 nt

is sold at pT . In this way we are certain to sell exactly N
shares over the course of the day; the only thing an algo-
rithm must do is determine the schedule of selling based on
the incoming market price-volume stream.

Any algorithm which sells fractional volumes can be con-
verted to a randomized algorithm which only sells integral
volumes with the same expected number of shares sold. If
we keep the hard constraint of selling exactly N shares, we
might incur an additional slight loss in the conversion. (Note
that we only allow fractional volumes in the price-volume
model, where liquidity is not an issue. In the order book
model to follow, we do not allow fractional volumes.)

In VWAP trading, the goal of an online algorithm A which
sells exactly N shares is not to maximize profits per se, but
to track the market VWAP. The market VWAP for an intra-
day trading sequence S = (p1, v1), . . . , (pT , vT ) is simply the
average price paid per share over the course of the trading



day, ie

VWAPM (S) =

(
T∑

t=1

ptvt

)
/V

where V is the total daily volume, i.e., V =
∑T

t=1 vt. If on
the sequence S, the algorithm A sells its N stocks using the
volume sequence n1, . . . nT , then we analogously define the
VWAP of A on market sequence S by

VWAPA(S) =

(
T∑

t=1

ptnt

)
/N .

Note that the market VWAP does not include the shares
that the algorithm sells.

The VWAP competitive ratio of A with respect to a set
of sequences Σ is then

RVWAP(A) = max
S∈Σ

{VWAPM (S)/VWAPA(S)}

In the case that A is randomized, we generalize the definition
above by taking an expectation over VWAPA(S) inside the
max. We note that unlike on Wall Street, our definition of
VWAPM does not take our own trading into account. It is
easy to see that this makes it a more challenging criterion
to track.

In contrast to the VWAP, another common measure of
the performance of an online selling algorithm would be its
one-way trading (OWT) competitive ratio [3] with respect
to a set of sequences Σ:

ROWT(A) = max
S∈Σ

max
1≤t≤T

{pt/VWAPA(S)}

where the algorithms performance is compared to the largest
individual price appearing in the sequence S.

In both VWAP and OWT, we are comparing the average
price per share received by a selling algorithm to some mea-
sure of market performance. In the case of OWT, we com-
pare to the rather ambitious benchmark of the high price of
the day, ignoring volumes entirely. In VWAP trading, we
have the more modest goal of comparing favorably to the
overall market average of the day. As we shall see, there are
some important commonalities and differences to these two
approaches. For now we note one simple fact: on any specific
sequence S, VWAPA(S) may be larger that VWAPM (S).
However, RVWAP(A) cannot be smaller than 1, since on any
sequence S in which all price pt are identical, it is impossible
to get a better average share per price. Thus, for all algo-
rithms A, both RVWAP(A) and ROWT(A) are larger than
1, and the closer to 1 they are, the better A is tracking its
respective performance measure.

2.2 VWAP Results in the Price-Volume Model
As in previous work on online trading, it is generally not

possible to obtain finite bounds on competitive ratios with
absolutely no assumptions on the set of sequences Σ —
bounds on the maximum variation in price or volume are
required, depending on the exact setting. We thus introduce
the following two assumptions.

2.2.0.1 Volume Variability Assumption..
Let 0 < Vmin ≤ Vmax be known positive constants, and

define Q = Vmax/Vmin . For all intraday trading sequences
S ∈ Σ, the total daily volume V ∈ [Vmin ,Vmax ].

2.2.0.2 Price Variability Assumption..
Let 0 < pmin ≤ pmax be known positive constants, and de-

fine R = pmax/pmin. For all intraday trading sequences S ∈
Σ, the prices satisfy pt ∈ [pmin, pmax], for all t = 1, . . . , T .

Competitive ratios are generally taken over all sets Σ con-
sistent with at least one of these assumptions. To gain some
intuition consider the two trivial cases of R = 1 and Q = 1.
In the case of R = 1 (where there is no fluctuation in price),
any schedule is optimal. In the case of Q = 1 (where the
total volume V over the trading period is known), we can
gain a competitive ratio of 1 by selling vt

V
N shares after each

time period.
For the OWT problem in the price-volume model, vol-

umes are irrelevant for the performance criterion, but for
the VWAP criterion they are central. For the OWT problem
under the price variability assumption, the results of [3] es-
tablished that the optimal competitive ratio was Θ(log(R)).
Our first result establishes that the optimal competitive ra-
tio for VWAP under the volume variability assumption is
Θ(log(Q)) and is achieved by an algorithm that ignores the
price data.

Theorem 1. In the price-volume model under the volume
variability assumption, there exists an online algorithm A
for selling N shares achieving competitive ratio RVWAP(A) ≤
2 log(Q). In addition, if only the volume variability (and not
the price variability) assumption holds, any online algorithm
A for selling N shares has RVWAP(A) = Ω(log(Q)).

Proof. (Sketch) For the upper bound, the idea is sim-
ilar to the price reservation algorithm of [3] for the OWT
problem, and similar in spirit to the general technique of
classify and select [1]. Consider algorithms which use a pa-

rameter V̂ , which is interpreted as an estimate for the total
volume for the day. Then at each time t, if the market
price and volume is (pt, vt), the algorithm sells a fraction

vt/V̂ of its shares. We consider a family of log(Q) such al-

gorithms, where algorithm Ai uses V̂ = Vmin2i−1. Clearly,
one of the Ai has a competitive ratio of 2. We can derive an
O(log(Q)) VWAP competitive ratio by running these algo-
rithms in parallel, and letting each algorithm sell N/ log(Q)
shares. (Alternatively, we can randomly select one Ai and
guarantee the same expected competitive ratio.)

We now sketch the proof of the lower bound, which re-
lates performance in the VWAP and OWT problems. Any
algorithm that is c-competitive in the VWAP setting (un-
der fixed Q) is 3c-competitive in the OWT setting with
R = Q/2. To show this, we take any sequence S of prices
for the OWT problem, and convert it into a price-volume se-
quence for the VWAP problem. The prices in the VWAP se-
quence are the same as in S. To construct the volumes in the
VWAP sequence, we segment the prices in S into log(R) in-
tervals [2i−1pmin , 2ipmin). Suppose pt ∈ [2i−1pmin , 2ipmin),
and this is the first time in S that a price has fallen in this
interval. Then in the VWAP sequence we set the volume
vt = 2i−1. If this is not the first visit to the interval con-
taining pt, we set vt = 0. Assume that the maximum price
in S is pmax . The VWAP of our sequence is at least pmax/3.
Since we had a c competitive algorithm, its average sell is at
least pmax/3c. The lower bound now follows using the lower
bound in [3].

An alternative approach to VWAP is to ignore the vol-
umes in favor of prices, and apply an algorithm for the OWT
problem. Note that the lower bound in this theorem, unlike
in the previous one, only assumes a price variation bound.



Theorem 2. In the price-volume model under the price
variability assumption, there exists an online algorithm A
for selling N shares achieving competitive ratio RVWAP(A) =
O(log(R)). In addition, if only the price variability (and not
the volume variability) assumption holds, any online A for
selling N shares has RVWAP(A) = Ω(log(R)).

Proof. (Sketch) Follows immediately from the results of
[3] for OWT: the upper bound from the simple fact that for
any sequence S, VWAPA(S) is less than max1≤t≤T {pt}, and
the lower bound from a reduction to OWT.

Theorems 1 and 2 demonstrate that one can achieve loga-
rithmic VWAP competitive ratios under the assumption of
either bounded variability of total volume or bounded vari-
ability of maximum price. If both assumptions hold, it is
possible to give an algorithm accomplishing the minimum
of log(Q) and log(R). This “flexibility” of approach derives
from the fact that the VWAP is a quantity in which both
prices and volumes matter, as opposed to OWT.

2.3 Related Results in the Price-Volume Model
All of the VWAP algorithms we have discussed so far

make some use of the daily data (pt, vt) as it unfolds, us-
ing either the price or volume information. In contrast, a
fixed schedule VWAP algorithm has a predetermined distri-
bution {f1, f2, . . . fT }, and simply sells ftN shares at time t,
independent of (pt, vt). Fixed schedule VWAP algorithms,
or slight variants of them, are surprisingly common on Wall
Street, and the schedule is usually derived from historical
intraday volume data. Our next result demonstrates that
such algorithms can perform considerably worse than dy-
namically adaptive algorithms in terms of the worst case
competitive ratio.

Theorem 3. In the price-volume model under both the
volume and price variability assumptions, any fixed schedule
VWAP algorithm A for selling N shares has sell VWAP
competitive ratio RVWAP(A) = Ω(min(T, R)).

The proofs of all the results in this subsection are in the
Appendix.

So far our emphasis has been on VWAP algorithms that
must sell exactly N shares. In many realistic circumstances,
however, there is actually some flexibility in the precise
number of shares to be sold. For instance, this is true at
large brokerages, where many separate VWAP trades may
be pooled and executed by a common algorithm, and the
firm would be quite willing to carry a small position of un-
sold shares overnight if it resulted in better execution prices.
The following theorem (which interestingly has no analogue
for the OWT problem) demonstrates that this trade-off in
shares sold and performance can be realized dramatically in
our model. It states that if we are willing to let the number
of shares sold vary with Q, we can in fact achieve a VWAP
competitive ratio of 1.

Theorem 4. In the price-volume model under the volume
variability assumption, there exists an algorithm A that al-
ways sells between N and QN shares and that the average
price per sold share is exactly VWAPM (S).

In many online problems, there is a clear distinction be-
tween “benefit” problems and “cost” problems [2]. In the
VWAP setting, selling shares is a benefit problem, and buy-
ing shares is a cost problem. The definitions of the compet-
itive ratios, Rbuy

VWAP(A) and Rbuy
OWT(A), for algorithms which

Figure 2: Sample Island order books for MSFT.

buy exactly N shares are maxS∈Σ{VWAPA(S)/VWAPM (S)}
and maxS∈Σ maxt{VWAPA(S)/pt} respectively. Eventhough
Theorem 4 also holds for buying, in general, the competitive
ratio of the buy (cost) problem is much higher, as stated in
the following theorem.

Theorem 5. In the price-volume model under the volume
and price variability assumptions, there exists an online al-
gorithm A for buying N shares achieving buy VWAP com-
petitive ratio Rbuy

VWAP(A) = O(min{Q,
√

R}). In addition
any online algorithm A for buying N shares has buy VWAP
competitive ratio Rbuy

VWAP(A) = Ω(min{Q,
√

R}).

3. A LIMIT ORDER BOOK TRADING
MODEL

Before we can define our online trading model based on
limit order books, we give some necessary background on
the detailed mechanics of financial markets, which are some-
times referred to as market microstructure. We then provide
results and algorithms for both the OWT and VWAP prob-
lems.



3.1 Background on Limit Order Books and
Market Microstructure

A fundamental distinction in stock trading is that between
a limit order and a market order . Suppose we wish to pur-
chase 1000 shares of Microsoft (MSFT) stock. In a limit
order, we specify not only the desired volume (1000 shares),
but also the desired price. Suppose that MSFT is currently
trading at roughly $24.07 a share (see Figure 2, which shows
an actual snapshot of a recent MSFT order book on Is-
land (www.island.com), a well-known electronic exchange
for NASDAQ stocks), but we are only willing to buy the
1000 shares at $24.04 a share or lower. We can choose to
submit a limit order with this specification, and our order
will be placed in a queue called the buy order book , which
is ordered by price, with the highest offered unexecuted buy
price at the top (often referred to as the bid). If there are
multiple limit orders at the same price, they are ordered by
time of arrival (with older orders higher in the book). In the
example provided by Figure 2, our order would be placed im-
mediately after the extant order for 5,503 shares at $24.04;
though we offer the same price, this order has arrived before
ours. Similarly, a sell order book for sell limit orders (for in-
stance, we might want to sell 500 shares of MSFT at $24.10
or higher) is maintained, this time with the lowest sell price
offered (often referred to as the ask).

Thus, the order books are sorted from the most compet-
itive limit orders at the top (high buy prices and low sell
prices) down to less competitive limit orders. The bid and
ask prices (which again, are simply the prices in the limit
orders at the top of the buy and sell books, respectively) to-
gether are sometimes referred to as the inside market , and
the difference between them as the spread . By definition,
the order books always consist exclusively of unexecuted or-
ders — they are queues of orders hopefully waiting for the
price to move in their direction.

How then do orders get executed? There are two meth-
ods. First, any time a market order arrives, it is immediately
matched with the most competitive limit orders on the op-
posing book. Thus, a market order to buy 2000 shares is
matched with enough volume on the sell order book to fill
the 2000 shares. For instance, in the example of Figure 2,
such an order would be filled by the two limit sell orders
for 500 shares at $24.069, the 500 shares at $24.07, the 200
shares at $24.08, and then 300 of the 1981 shares at $24.09.
The remaining 1681 shares of this last limit order would re-
main as the new top of the sell limit order book. Second,
if a buy (sell, respectively) limit order comes in above the
ask (below the bid, respectively) price, then the order is
matched with orders on the opposing books. It is important
to note that the prices of executions are the prices specified
in the limit orders already in the books, not the prices of the
incoming order that is immediately executed.

Every market or limit order arrives atomically and instan-
taneously — there is a strict temporal sequence in which or-
ders arrive, and two orders can never arrive simultaneously.
This gives rise to the definition of the last price of the ex-
change, which is simply the last price at which the exchange
executed an order. It is this quantity that is usually meant
when people casually refer to the (ticker) price of a stock.

Note that a limit buy (sell, respectively) order with a
price of infinity (0, respectively) is effectively a market or-
der. We shall thus assume without loss of generality that
all orders are placed as limit order. Although limit orders

which are unexecuted may be removed by the party which
placed them, for simplicity, we assume that limit orders are
never removed from the books.

We refer the reader to [4] for further discussion of modern
electronic exchanges and market microstructure.

3.2 The Model
The online order book trading model is intended to capture

the realistic details of market microstructure just discussed
in a competitive ratio setting. In this refined model, a day’s
market activity is described by a sequence of limit orders
(pt, vt, bt). Here bt is a bit indicating whether the order is
a buy or sell order, while pt is the limit order price and vt

the number of shares desired. Following the arrival of each
such limit order, an online trading algorithm is permitted
to place its own limit order. These two interleaved sources
(market and algorithm) of limit orders are then simply op-
erated on according to the matching process described in
Section 3.1. Any limit order that is not immediately exe-
cutable according to this process is placed in the appropriate
(buy or sell) book for possible future execution; arriving or-
ders that can be partially or fully executed are so executed,
with any residual shares remaining on the respective book.

The goal of a VWAP or OWT selling algorithm is es-
sentially the same as in the price-volume model, but the
context has changed in the following two fundamental ways.
First, the assumption of infinite liquidity in the price-volume
model is eliminated entirely. The number of shares available
at any given price is restricted to the total volume of limit
orders offering that price. Second, all incoming orders, and
therefore the complete limit order books, are assumed to
be visible to the algorithm. This is consistent with modern
electronic financial exchanges, and indeed is the source of
much current interest on Wall Street [4].

In general, the definition of competitive ratios in the order
book model is complicated by the fact that now our algo-
rithm’s activity influences the sequence of executed prices
and volumes. We thus first define the execution sequence
determined by a limit order sequence (placed by the mar-
ket and our algorithm). Let S = (p1, v1, b1), . . . , (pT , vT , bT )
be a limit order sequence placed by the market, and let
S′ = (p′

1, v
′
1, b

′
1), . . . , (p

′
T , v′

T , b′T ) be a limit order sequence
placed by our algorithm (unless otherwise specified, all b′t are
of the sell type). Let merge(S, S′) be the merged sequence
(p1, v1, b1), (p

′
1, v

′
1, b

′
1), . . . , (pT , vT , bT ), (p′

T , v′
T , b′T ), which is

the time sequence of orders placed by the market and algo-
rithm. Note that the algorithm has the option of not placing
an order, which we can view as a zero volume order.

If we conducted the order book maintenance and order
execution process described in Section 3.1 on the sequence
merge(S, S′), at irregular intervals a trade occurs for some
number of shares and some price. In each executed trade,
the selling party is either the market or the algorithm. Let
execM (S, S′) = (q1, w1), . . . , (qT ′ , wT ′) be the sequence of
executions where the market (that is, a party other than
the algorithm) was the selling party, where the qt are the
execution prices and wt the execution volumes. Similarly,
we define execA(S, S′) = (r1, x1), . . . , (rT ′′ , xT ′′) to be the
sequence of executions in which the algorithm was the selling
party. Thus, execA(S, S′) ∪ execM (S, S′) is the set of all
executions. We generally expect T ′′ to be (possibly much)
smaller than T ′.

The revenue of the algorithm and the market are defined



as:

REVM (S, S′) ≡
T ′∑

t=1

qtwt , REVA(S, S′) ≡
T ′′∑
t=1

rtxt

Note that both these quantities are solely determined by the
execution sequences execM (S, S′) and execA(S, S′), respec-
tively.

For an algorithm A which is constrained to sell exactly N
shares, we define the OWT competitive ratio of A, ROWT(A),
as the maximum ratio (under any S ∈ Σ) of the revenue ob-
tained by A, as compared to the revenue obtained by an
optimal offline algorithm A∗. More formally, for A∗ which
is constrained to sell exactly N shares, we define

ROWT(A) = max
S∈Σ

max
A∗

REVA∗(S S∗)
REVA(S, S′)

where S∗ is the limit order sequence placed by A∗ on S. If
the algorithm A is randomized then we take the appropriate
expectation with respect to S′ ∼ A.

We define the VWAP competitive ratio, RVWAP(A), as
the maximum ratio (under any S ∈ Σ) between the market
and algorithm VWAPs. More formally, define VWAPM (S, S′)
as REVM (S, S′)/

∑T ′
t=1 wt, where the denominator is just

the total executed volume of orders placed by the mar-
ket. Similarly, we define VWAPA(S, S′) as REVA(S, S′)/N ,
since we assume the algorithm sells no more than N shares
(this definition implicitly assumes that A gets a 0 price for
unsold shares). The VWAP competitive ratio of A is then:

RVWAP(A) = max
S∈Σ

{VWAPM (S, S′)/VWAPA(S, S′)}

where S′ is the online sequence of limit orders generated by
A in response to the sequence S.

3.3 OWT Results in the Order Book Model
For the OWT problem in the order book model, we intro-

duce a more subtle version of the price variability assump-
tion. This is due to the fact that our algorithm’s trading
can impact the high and low prices of the day. For the as-
sumption below, note that execM (S, ∅) is the sequence of
executions without the interaction of our algorithm.

3.3.0.3 Order Book Price Variability Assumption..
Let 0 < pmin ≤ pmax be known positive constants, and

define R = pmax/pmin. For all intraday trading sequences
S ∈ Σ, the prices pt in the sequence execM (S, ∅) satisfy
pt ∈ [pmin, pmax], for all t = 1, . . . , T .

Note that this assumption does not imply that the ratios
of high to low prices under the sequences execM (S, S′) or
execA(S, S′) are bounded by R. In fact, the ratio in the
sequence execA(S, S′) could be infinite if the algorithm ends
up selling some stocks at a 0 price.

Theorem 6. In the order book model under the order
book price variability assumption, there exists an online algo-
rithm A for selling N shares achieving sell OWT competitive
ratio ROWT(A) = 2 log(R) log(N).

Proof. The algorithm A works by guessing a price p in
the set {pmin2i : 1 ≤ i ≤ log(R)} and placing a sell limit
order for all N shares at the price p at the beginning of
the day. (Alternatively, algorithm A can place log(R) sell

limit orders, where the i-th one has price 2ipmin and volume
N/ log(R).) By placing an order at the beginning of the day,
the algorithm undercuts all sell orders that will be placed
during the day for a price of p or higher, meaning the algo-
rithm’s N shares must be filled first at this price. Hence,
if there were k shares that would have been sold at price p
or higher without our activity, then A would sell at least kp
shares.

We define {pj} to be the multiset of prices of individ-
ual shares that are either executed or are buy limit order
shares that remained unexecuted, excluding the activity of
our algorithm (that is, assuming our algorithm places no or-
ders). Assume without loss of generality that p1 ≥ p2 ≥ . . ..
Consider guessing the kth highest such price, pk. If an or-
der for N shares is placed at the day’s start at price pk,
then we are guaranteed to obtain a return of kpk. Let
k∗ = argmaxk{kpk}. We can view our algorithm as at-
tempting to guess pk∗ , and succeeding if the guess p sat-
isfies p ∈ [pk∗/2, pk∗ ]. Hence, we are 2 log(R) competitive
with the quantity max1≤k≤N kpk. Note that

ρ ≡
N∑

i=1

pi

=

N∑
i=1

1

i
ipi

≤ max
1≤k≤N

kpk

N∑
i=1

1

i

≤ log(N) max
1≤k≤N

kpk

where ρ is defined as the sum of the top N prices pi without
A’s involvement.

Similarly, let {p′
j} be the multiset of prices of individ-

ual executed shares, or the prices of unexecuted buy order
shares, but now including the orders placed by some selling
algorithm A′. We now wish to show that for all algorithms
A′ which sell N shares, REVA′ ≤ ∑N

i=1 p′
i ≤ ρ. Essen-

tially, this inequality states the intuitive idea that a selling
algorithm can only lower executed or unmatched buy or-
der share prices. To prove this, we use induction to show
that the removal of the activity of a selling algorithm causes
these prices to increase. First, remove the last share in the
last sell order placed by either A′ or the market on an ar-
bitrary sequence merge(S, S′) — by this we mean, take the
last sell order placed by A′ or the market and decrease its
volume by one share. After this modification, the top N
prices p′

1 . . . p′
N will not decrease. This is because either this

sell order share was not executed, in which case the claim
is trivially true, or, if it was executed, the removal of this
sell order share leaves an additional unexecuted buy order
share of equal or higher price. For induction, assume that if
we remove a share from any sell order that was placed, by
A′ or the market, at or after time t then the top N prices
do not decrease. We now show that if we remove a share
from the last sell order that was placed by A′ or the market
before time t, then the top N prices do not decrease. If this
sell order share was not executed, then the claim is trivially
true. Else, if the sell order share was executed, then claim
is true because by removing this executed share from the
sell order either: i) the corresponding buy order share (of
equal or higher value) is unmatched on the remainder of the
sequence, in which case the claim is true; or ii) this buy



order matches some sell order share at an equal or higher
price, which has the effect of removing a share from a sell
order on the remainder of the sequence, and, by the induc-
tive assumption, this can only increase prices. Hence, we
have proven that for all A′ which sell N shares REVA′ ≤ ρ.

We have now established that our revenue satisfies

2 log(R)ES′∼A[REVA(S, S′)] ≥ max
1≤k≤N

{kpk}
≥ ρ/ log(N)

≥ max
A′ {REVA′}/ log(N),

where A′ performs an arbitrary sequence of N sell limit or-
ders.

3.4 VWAP Results in the Order Book Model
The OWT algorithm from Theorem 6 can be applied to

obtain the following VWAP result:

Corollary 7. In the order book model under the order
book price variability assumption, there exists an online al-
gorithm A for selling N shares achieving sell VWAP com-
petitive ratio RVWAP(A) = O(log(R) log(N)).

We now make a rather different assumption on the se-
quences S.

3.4.0.4 Bounded Order Volume and Max Price As-
sumption.

The set of sequences Σ satisfies the following two proper-
ties. First, we assume that each order placed by the market
is of volume less than γ, which we view as a mild assumption
since typically single orders on the market are not of high
volume (due to liquidity issues). This assumption allows our
algorithm to place at least one limit order at a time inter-
leaved with approximately γ market executions. Second, we
assume that there is “large” volume in the sell order books
below the price pmax , which means that no orders placed by
the market will be executed above the price pmax . The sim-
plest way to instantiate this latter assumption in the order
book model is to assume that each sequence S ∈ Σ starts
by placing a huge number of sell orders (more than Vmax )
at price pmax .

Although this assumption has a maximum price parame-
ter, it does not imply that the price ratio R is finite, since
it does not imply any lower bound on the prices of buy or
executed shares (aside from the trivial one of 0).

Theorem 8. Consider the order book model under the
bounded order volume and max price assumption. There
exists an algorithm A in which after exactly γN market ex-
ecutions have occurred, then A has sold at most N shares
and

REVA(S, S′)
N

= VWAPA(S, S′)

≥ (1 − ε)VWAPM (S, S′) − pmax

εN

where S′ is a sequence of N sell limit orders generated by A
when observing S.

Proof. The algorithm divides the trading day into vol-
ume intervals whose real-time duration may vary. For each
period i in which γ shares have been executed in the mar-
ket, the algorithm computes the market VWAP of only those

shares traded in period i; let us denote this by VWAPi. Fol-
lowing this ith volume interval, the algorithm places a limit
order to sell exactly one share at a price “close” to VWAPi.

More precisely, the algorithm only places orders at the
discrete prices (1−ε)pmax , (1−ε)2pmax , . . .. Following volume
interval i, the algorithm places a limit order to sell one share
at the discretized price that is closest to VWAPi, but which
is strictly smaller .

For the analysis, we begin by noting that if all of the
algorithm’s limit orders are executed during the day, the
total revenue received by the algorithm would be at least
(1− ε)VWAPM (S, S′)N . To see this, it suffices to note that
VWAPM (S, S′) is a uniform mixture of the VWAPi (since
by definition they each cover the same amount of market
volume); and if all the algorithm’s limit orders were exe-
cuted, they each received more than (1 − ε)VWAPi dollars
for the interval i they followed.

We now count the potential “lost revenue” of the algo-
rithm due to unexecuted limit orders. By the assumption
that individual orders are placed with volume less than γ,
then our algorithm is able to place a limit order during every
block of γ shares have been traded. Hence, after γN market
orders have been executed, A has placed N orders in the
market.

Note that there can be at most one limit order (and thus,
at most one share) left unexecuted at each level of the dis-
cretized price ladder defined above. This is because follow-
ing interval i, the algorithm places its limit order strictly
below VWAPi, so if VWAPj ≥ VWAPi for j > i, this limit
order must have been executed. Thus unexecuted limit or-
ders bound the VWAPs of the remainder of the day, result-
ing in at most one unexecuted order per price level.

A bound on the lost revenue is thus the sum of the dis-
cretized prices:

∑∞
i=1(1 − ε)ipmax ≤ pmax/ε . Clearly our

algorithm has sold at most N shares.
Note that as N becomes large, VWAPA approaches 1− ε

times the market VWAP. If we knew that the final total
volume of the market executions is V , then we can set γ =
V/N , assuming that γ >> 1. If we have only an upper and
lower bound on V we should be able to “guess” and incur a
logarithmic loss. The following assumption tries to capture
the market volume variability.

3.4.0.5 Order Book Volume Variability Assumption.
We now assume that the total volume (which includes

the shares executed by both our algorithm and the market)
is variable within some known region and that the market
volume will be greater than our algorithms volume. More
formally, for all S ∈ Σ, assume that the total volume V
of shares traded in execM (S, S′), for any sequence S′ of N
sell limit orders, satisfies 2N ≤ Vmin ≤ V ≤ Vmax . Let
Q = Vmax/Vmin .

The following corollary is derived using a constant ε = 1/2
and observing that if we set γ such that V ≤ γN ≤ 2V then
our algorithm will place between N and N/2 limit orders.

Corollary 9. In the order book model, if the bounded
order volume and max price assumption, and the order book
volume variability assumption hold, there exists an online
algorithm A for selling at most N shares such that

VWAPA(S, S′) ≥ 1

4 log(Q)
VWAPM (S, S′) − 2pmax

N
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Figure 3: Here we present bounds from Section 4 based on the empirical volume distributions for four real stocks:

QQQ, MCHP, JNPR, and CHKP. The plots show histograms for the total daily volumes transacted on Island for

these stocks, in the last year and a half, along with the corresponding values of log(Q) and E(Pbins
vol ) (denoted by ’E’).

We assume that the minimum and maximum daily volumes in the data correspond to Vmin and Vmax , respectively.

The worst-case competitive ratio bounds (which are twice log(Q)) of our algorithm for those stocks are 9.42, 10.56, 11.32,

and 13.20, respectively. The corresponding bounds on the competitive ratio performance of our algorithm under the

volume distribution model (which are twice E(Pbins
vol )) are better: 7.54, 7.72, 7.94, and 9.00, respectively (a 20−40% relative

improvement). Using a finer volume binning along with a slightly more refined bound on the competitive ratio, we can

construct algorithms that, using the empirical volume distribution given as correct, guarantee even better competitive

ratios of 2.76, 2.73, 2.75, and 3.17, respectively for those stocks (details omitted).

4. MACROSCOPIC DISTRIBUTION
MODELS

We conclude our results with a return to the price-volume
model, where we shall introduce some refined methods of
analysis for online trading algorithms. We leave the gen-
eralization of these methods to the order book model for
future work.

The competitive ratios defined so far measure performance
relative to some baseline criterion in the worst case over all
market sequences S ∈ Σ. It has been observed in many
online settings that such worst-case metrics can yield pes-
simistic results, and various relaxations have been consid-
ered, such as permitting a probability distribution over the
input sequence.

We now consider distributional models that are consid-
erably weaker than assuming a distribution over complete
market sequences S ∈ Σ. In the volume distribution model ,
we assume only that there exists a distribution Pvol over the
total volume V traded in the market for the day, and then ex-
amine the worst-case competitive ratio over sequences con-
sistent with the randomly chosen volume. More precisely,
we define

RVWAP(A, Pvol) = EV ∼Pvol

[
max

S∈seq(V )

VWAPM (S)

VWAPA(S)

]
.

Here V ∼ Pvol denotes that V is chosen with respect to
distribution Pvol , and seq(V ) ⊂ Σ is the set of all market

sequences (p1, v1), . . . , (pT , vT ) satisfying
∑T

t=1 vt = V .
Similarly, for OWT, we can define

ROWT(A, Pmaxprice) = Ep∼Pmaxprice

[
max

S∈seq(p)

p

VWAPA(S)

]
.

Here Pmaxprice is a distribution over just the maximum price
of the day, and we then examine worst-case sequences con-
sistent with this price (seq(p) ⊂ Σ is the set of all market
sequences satisfying max1≤t≤T pt = p). Analogous buy-side
definitions can be given.

We emphasize that in these models, only the distribution
of maximum volume and price is known to the algorithm.
We also note that our probabilistic assumptions on S are
considerably weaker than typical statistical finance mod-
els, which would posit a detailed stochastic model for the
step-by-step evolution of (pt, vt). Here we instead permit
only a distribution over crude, macroscopic measures of the
entire day’s market activity, such as the total volume and
high price, and analyze the worst-case performance consis-
tent with these crude measures. For this reason, we refer to
such settings as the macroscopic distribution model .

The work of El-Yaniv et al. [3] examines distributional
assumptions similar to ours, but they emphasize the worst-



case choices for the distributions as well, and show that this
leads to results no better than the original worst-case anal-
ysis over all sequences. In contrast, we feel that the analysis
of specific distributions Pvol and Pmaxprice is natural in many
financial contexts and our preliminary experimental results
show significant improvements when this rather crude dis-
tributional information is taken into account (see Figure 3).
Our results in the VWAP setting examine the cases where
these distributions are known exactly or only approximately.
Similar results can be obtained for macroscopic distributions
of maximum daily price for the one-way trading setting.

4.1 Results in the Macroscopic Distribution
Model

We begin by noting that the algorithms examined so far
work by binning total volumes or maximum prices into bins
of exponentially increasing size, and then “guessing” the
index of the bin in which the actual quantity falls. It is
thus natural that the macroscopic distribution model per-
formance of such algorithms (which are common in compet-
itive analysis) might depend on the distribution of the true
bin index.

In the remaining, we assume that Q is a power of 2 and
the base of the logarithm is 2. Let Pvol denote the dis-
tribution of total daily market volume. We define the re-
lated distribution P bins

vol over bin indices i as follows: for
all i = 1, . . . , log(Q) − 1, P bins

vol (i) is equal to the probabil-
ity, under Pvol , that the daily volume falls in the interval
[Vmin2i−1,Vmin2i), and P bins

vol (log(Q)) is for the last interval
[Vmax/2,Vmax ] .

We define E as

E(P bins
vol ) ≡

(
Ei∼Pbins

vol

[√
1/P bins

vol (i)

])2

=


log(Q)∑

i=1

√
P bins

vol (i)




2

.

Since the support of P bins
vol has only log(Q) elements, E(P bins

vol )
can vary from 1 (for distributions Pvol that place all of
their weight in only one of the log(Q) intervals between
Vmin ,Vmin2,Vmin4, . . . , Vmax ) to log(Q) (for distributions
Pvol in which the total daily volume is equally likely to fall
in any one of these intervals). Note that distributions Pvol

of this latter type are far from uniform over the entire range
[Vmin ,Vmax ].

Theorem 10. In the volume distribution model under the
volume variability assumption, there exists an online algo-
rithm A for selling N shares that, using only knowledge of
the total volume distribution Pvol , achieves RVWAP(A, Pvol) ≤
2E(P bins

vol ).

All proofs in this section are provided in the appendix.
As a concrete example, consider the case in which Pvol

is the uniform distribution over [Vmin ,Vmax ]. In that case,
P bins

vol is exponentially increasing and peaks at the last bin,
which, having the largest width, also has the largest weight.
In this case E(P bins

vol ) is a constant (i.e., independent of Q),
leading to a constant competitive ratio. On the other hand,
if Pvol is exponential, then P bins

vol is uniform, leading to an
O(log(Q)) competitive ratio, just as in the more adversarial
price-volume setting discussed earlier. In Figure 3, we pro-

vide additional specific bounds obtained for empirical total
daily volume distributions computed for some real stocks.

We now examine the setting in which Pvol is unknown,
but an approximation P̃vol is available. Let us define

C(P bins
vol , P̃ bins

vol ) =

[∑log(Q)
j=1

√
P̃ bins

vol (j)

] [∑log(Q)
i=1

Pbins
vol (i)√
P̃bins

vol
(i)

]
.

C is minimized at C(P bins
vol , P bins

vol ) = E(P bins
vol ), and C may

be infinite if P̃ bins
vol (i) is 0 when P bins

vol (i) > 0.

Theorem 11. In the volume distribution model under the
volume variability assumption, there exists an online algo-
rithm A for selling N shares that using only knowledge of
an approximation P̃vol of Pvol achieves RVWAP(A, Pvol) ≤
2C(P bins

vol , P̃ bins
vol ).

As an example of this result, suppose our approximation
obeys (1/α)P bins

vol (i) ≤ P̃ bins
vol (i) ≤ αP bins

vol (i) for all i, for
some α > 1. Thus our estimated bin index probabilities
are all within a factor of α of the truth. Then it is easy
to show that C(P bins

vol , P̃ bins
vol ) ≤ αE(P bins

vol ), so according to
Theorems 10 and 11 our penalty for using the approximate
distribution is a factor of α in competitive ratio.
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6. APPENDIX

6.1 Proofs from Subsection 2.3

Proof. (Sketch of Theorem 3) W.l.o.g., assume that Q =
1 and the total volume is V . Consider the time t where the
fixed schedule f sells the least, then ft ≤ N/T . Consider the
sequences where at time t we have pt = pmax , vt = V , and
for times t′ 6= t we have pt′ = pmin and vt′ = 0. The VWAP
is pmax and the fixed schedule average is (N/T )pmax +(N −
N/T )pmin .

Proof. (Sketch of Theorem 4) The algorithm simply sells
ut = (vt/Vmin)N shares at time t. The total number of
shares sold U is clearly more than N and

U =
∑

t

ut =
∑

t

(vt/Vmin)N = (V/Vmin)N ≤ QN

The average price is

V WAPA(S) = (
∑

t

ptut)/U =
∑

t

pt(vt/V ) = V WAPM (S),

where we used the fact that ut/U = vt/V .



Proof. (of Theorem 5) We start with the proof of the
lower bound. Consider the following scenario. For the first
T time units we have a price of

√
Rpmin , and a total volume

of Vmin . We observe how many shares the online algorithm
has bought. If it has bought more than half of the shares,
the remaining time steps have price pmin and volume Vmax −
Vmin . Otherwise, the remaining time steps have price pmax

and negligible volume.
In the first case the online has paid at least

√
Rpmin/2

while the VWAP is at most
√

Rpmin/Q + pmin . Therefore,
in this case the competitive ratio is Ω(Q). In the second case
the online has to buy at least half of the shares at pmax , so
its average cost is at least pmax/2. The market VWAP is√

Rpmin = pmax/
√

R, hence the competitive ratio is Ω(
√

R).

For the upper bound, we can get a
√

R competitive ratio,
by buying all the shares once the price drops below

√
Rpmin .

The Q upper bound is derive by running an algorithm that
assumes the volume is Vmin . The online pays a cost of p,
while the VWAP will be at least p/Q.

6.2 Proofs from Section 4

Proof. (Sketch of Theorem 10) We use the idea of guess-
ing the total volume from Theorem 1, but now allow for the
possibility of an arbitrary (but known) distribution over the
total volume. In particular, consider constructing a distri-
bution Gbins

vol over a set of volume values using Pvol and use
it to guess the total volume V . Let the algorithm guess
V̂ = Vmin2i with probability Gbins

vol (i). Then note that,
for any price-volume sequence S, if V ∈ [Vmin2i−1,Vmin2i],
VWAPA(S) ≥ Gbins

vol (i)VWAPM (S)/2. This implies an up-
per bound on RVWAP(A, Pvol) in terms of Gbins

vol . We then

get that Gbins
vol (i) ∝ √

P bins
vol (i) minimizes the upper bound,

which leads to the upper bound stated in the theorem.

Proof. (Sketch of Theorem 11) Replace Pvol with P̃vol

in the expression for Gbins
vol in the proof sketch for the last

result.


