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Abstract— This work has been submitted to the IEEE for
possible publication. Copyright may be transferred without
notice, after which this version will be superseded.

Bayesian nonparametric models are widely and successfully
used for statistical prediction. While posterior consistency prop-
erties are well studied in quite general settings, results have
been proved using abstract concepts such as metric entropy, and
they come with subtle conditions which are hard to validate
and not intuitive when applied to concrete models. Furthermore,
convergence rates are difficult to obtain.

By focussing on the concept of information consistency for
Bayesian Gaussian process models, consistency results and con-
vergence rates are obtained via a regret bound on cumulative log
loss. These results depend strongly on the covariance function
of the prior process, thereby giving a novel interpretation to
penalization with reproducing kernel Hilbert space norms and to
commonly used covariance function classes and their parameters.
The proof of the main result employs elementary convexity
arguments only. A theorem of Widom is used in order to obtain
precise convergence rates for several covariance functions widely
used in practice.

Index Terms— Bayesian prediction, eigenvalue asymptotics,
Gaussian process, information consistency, nonparametric statis-
tics, online learning, posterior consistency, regret bound

I. I NTRODUCTION

I N this correspondence, we are interested in methods pre-
dicting a responsey ∈ Y from a covariatex ∈ X . Given

some class of functionsF = {f : X → R} and a likelihood
conditional distributionP (y|f(x)) over Y, we assume that
data y1, . . . , yn, given x1, . . . ,xn, is generated by nature
picking f , then samplingyi ∼ P (·|f(xi)) independently1.
Note that covariates are by definition always given at pre-
diction time, and in the sequel all distributions are implicitly
conditional on all necessary covariate instances. We assume
that the covariates are independently drawn from a distribution
dµ(x), which will not be modelled.

The prediction task may be of batch nature,i.e. given some
training data{(xi, yi) | i = 1, . . . , n}, predictyn+1 for unseen
xn+1, or of sequential nature,i.e. predictyi, givenx1, . . . ,xi

andy1, . . . , yi−1 respectively, fori = 1, . . . , n. The Bayesian
prediction strategyis the same in both situations. Initial
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1In some settings, it is advisable to parameterize nature’s choice by more

than one real-valued function. While our results can be extended to this case
straightforwardly, we focus on single function models for simplicity.

assumptions about nature’s choice are encoded in aprior
distribution Pbs(f) over F . This distribution is conditioned
on observed data in order to obtain theposterior distribution

dPbs(f |y1, . . . , yn) =
[
∏n

i=1 P (yi|f(xi))]dPbs(f)∫
[
∏n

i=1 P (yi|f ′(xi))]dPbs(f ′)

from which thepredictive distributionis obtained as

Pbs(yn+1|y≤n) =
∫
P (yn+1|f(xn+1))dPbs(f |y≤n)

thus as expectation of the likelihood w.r.t. the posterior. Note
that this strategy has strong practical and theoretical merits,
even if nature doesnot choosef according toPbs. Barron’s
work [1] can be understood as trying to characterize Bayesian
prediction performance depending on the prior specification,
assuming that the true likelihood is known, but making mini-
mal or no assumptions about nature’s true choice off .

An intuitive way to information consistency goes via se-
quential prediction. Lety≤i = {y1, . . . , yi}, andx≤i accord-
ingly. An expert prediction strategyparameterized byf ∈ F
is

P (y≤n|f) =
n∏

i=1

P (yi|f(xi)).

An expert predictsP (yi|f(xi)) independently for each unseen
point, using a fixed function. The Bayesian prediction strategy
is mixing over experts, in the sequential case by using the
predictive distributionsPbs(yi|y<i), so the mixing distribution
is always given by the posterior for all observed data. Now,
suppose that a prediction strategy, outputtingQ(·) in order
to predictyi, incurs thelog loss− logQ(yi) for each single
prediction, and the cumulative log loss overall:

LQ(y≤n) =
n∑

i=1

− logQ(yi|y<i).

For an expertf , the cumulative log loss isLf (y≤n) =
− logP (y≤n|f), while for the Bayesian strategy we have that
Lbs(y≤n) = − logPbs(y≤n) by the chain rule. The Bayesian
strategy has been analyzed under the log loss setting by several
reasearchers [2], [3].

Let Q be a prediction strategy, and letFcomp ⊂ F be a
competitor space. Barron [1] callsQ information consistent
overFcomp iff

Ex≤n

[
D
[
P (y≤n|f,x≤n) ‖Q(y≤n|x≤n)

]]
n

→ 0 (n→∞)
(1)

for all f ∈ Fcomp. Here, the expectation is over
x≤n ∼ µn, and D[P1 ‖P2] =

∫
(logP1 − logP2) dP1
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is the relative entropy (or Kullback-Leibler diver-
gence). Note that n−1E[D[P (y≤n|f) ‖Q(y≤n)]] =
n−1

∑n
i=1 E[D[P (yi|f(xi)) ‖Q(yi|y<i)]], which is a

type of Cesaro average risk. Information consistency seems
a fairly weak mode of consistency, but Barron [1] argues
that some stronger notions do have shortcomings which are
unintuitive at the least. For example, while the average of
the left hand side of (1) overf ∼ Pbs is nonincreasing,
the individual Kullback risk D[P (yi|f(xi)) ‖Pbs(yi|y<i)]
can increase for somei, even if Pbs(f) is large. And in
order to ensure that for anyf , the posteriorP (f |y≤n)
concentrates on arbitrary small neighborhoods off (w.r.t.
Hellinger, Kullback, or some other metric) [4], unintuitive
global conditions onPbs are required (Barron [1] gives an
example of posterior inconsistency, wherePbs(Fbad) = 1/2,
but Pbs(Fbad|y≤n) → 1 almost surely, andd(f, f ′) = 1 for
all f ′ ∈ Fbad, data coming fromf ). We focus on information
consistency in what follows.

In order to relate information consistency to sequential
prediction under cumulative log loss, note that

D
[
P (y≤n|f) ‖Pbs(y≤n)

]
= E

[
Lbs(y≤n)− Lf (y≤n)

]
where the expectation is overy≤n ∼ P (·|f). If we can bound
Lbs(y≤n)−Lf (y≤n) uniformly over ally≤n, and for allf ∈
Fcomp, this implies information consistency and convergence
rate bounds.

Our main result can be stated as follows. Consider a
Bayesian Gaussian process prediction strategyPbs, where the
prior distributionPbs(f) is a zero mean Gaussian process with
covariance functionK(x,x′), and letH be the reproducing
kernel Hilbert space determined byK, having norm‖f‖K .
Furthermore, let the curvature of− logP (y|f(x)) w.r.t. f(x)
be bounded byc > 0 for any y ∈ Y. We show that

D
[
P (y≤n|f) ‖Pbs(y≤n)

]
≤ 1

2
‖f‖2K +

1
2

log |I + cK |

for any f ∈ H, where K = (K(xi,xj))i,j ∈ Rn,n is
the covariance matrix depending onK and x≤n. Therefore,
Bayesian GP prediction is information consistent w.r.t.H
if n−1E[log |I + cK |] → 0 (n → ∞), where the latter
criterion depends on the covariance functionK and the
covariate distributionµ only. We give a range of examples for
practically relevant covariance functions and restrictions on
µ, for which information consistency and convergence rates
can be established along this path, namely by analyzing the
term E[log |I + cK |] asymptotically asn → ∞. To this
end, we utilize the Mercer eigenexpansion of the covariance
function K w.r.t. the measuredµ, and a powerful theorem
by Widom [5] in order to obtain asymptotic expressions for
the eigenvalues. To the best of our knowledge, our approach
to obtain sharp information convergence rates for Gaussian
process nonparametric prediction methods is novel. The regret
term n−1E[log |I + cK |] and also our bounds for common
kernel classes depend explicitly on parameters ofK and µ,
thereby giving new characterizations of these regularization
parameters in terms of convergence rates.

In Section II, we state our main result, a regret bound for
cumulative log loss of Bayesian GP prediction. In Section III,

we develop tools in order to bound the expected regret featur-
ing in our result. These tools are applied to several classes of
covariance functions frequently used in practice in Section IV.
Conclusions are given in Section V, and the Appendix contains
details of proofs.

II. M AIN RESULT

A Gaussian process(GP) model is defined on the spaceF
of continuous functionsX → R. A zero mean GP is a random
function f ∈ F with E[f(x)] = 0 and E[f(x)f(x′)] =
K(x,x′) for all x,x′ ∈ X . Gaussian processes have the
property that all associated finite dimensional distributions
are Gaussian again. Namely, letx1, . . . ,xk be arbitrary, and
consider the random vectorf = (f(xi))i ∈ Rk. Then, f
has a multivariate Gaussian distribution with mean0 and
covariance matrix(K(xi,xj))i,j ∈ Rk,k. For details on Gaus-
sian processes in Machine Learning, see [6], [7]. Gaussian
process models form a major class of nonparametric methods
which are routinely used for spatial statistics applications in
geostatistics and remote sensing [8]. Bayesian GP prediction
has been pioneered by O’Hagan [9], and has been applied
to many problems in Machine Learning. We note that while
Bayesian GP prediction is analytically tractable only for a
Gaussian likelihood, Markov chain Monte Carlo techniques
may be used to sample from the posterior, or one of several
variational approximation techniques proposed in Machine
Learning may be applied.

The covariance functionK of a GP is a positive semi-
definite form, in that all induced covariance matricesK are
always positive semi-definite:vT Kv ≥ 0 for all vectorsv .
A reproducing kernel Hilbert space(RKHS) [10], [11] of
functionsX → R is associated withK as follows. Consider
the linear space of all finite kernel expansions (over any
x1, . . . ,xn) of the form f(·) =

∑n
i=1 αiK(·,xi), with the

inner product∑
i

αiK(·,xi),
∑

j

βjK(·,x′j)


K

=
∑
i,j

αiβjK(xi,x
′
j).

The RKHS H is the completion of this space. By con-
struction, H contains all finite kernel expansionsf(·) =∑n

i=1 αiK(·,xi) with

‖f‖2K = αT Kα, Ki,j = K(xi,xj). (2)

The characteristic property ofH is that all (Dirac) evalua-
tion functionals arerepresentedin H itself by the functions
K(·,xi), meaning that(f,K(·,xi))K = f(xi). This repro-
ducing propertymeans that convergence in norm inH implies
pointwise convergence, so allf ∈ H are pointwise defined.
Intuitively, H is a space withinL2(X ) of reasonably well-
behaved functions. In general, it is the case that functions of
larger RKHS norm show a rougher and more irregular be-
haviour, and‖f‖2K is commonly used as smoothness penalty.
The RKHSH turns out to be the largest competitor space of
experts for which our results are meaningful. We note that
for most kernels used in practice, and in fact for all infinite
dimensional kernels mentioned here,H is dense in the space
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of continuous functions restricted to a compact domain inX .
Also note that the “complexity”‖f‖K assigned to a function
f depends on characteristics ofK, and our results render a
new interpretation for this dependency.

Theorem 1 (Main Result):Let Pbs be the Bayesian GP
prediction method, configured by a zero mean Gaussian pro-
cess prior with covariance functionK. Let (x≤n,y≤n) be a
sequence from(X ×Y)n andf be a function from the RKHS
H associated withK. Then,

− logPbs(y≤n) ≤− logP (y≤n|f) +
1
2
‖f‖2K

+
1
2

log |I + cK |
(3)

where‖f‖K is the RKHS norm off , K = (K(xi,xj))i,j ∈
Rn,n is the covariance matrix over the input sequencex≤n,
andc > 0 is a constant such that for ally ∈ Y, f(x) ∈ R:

d2

df(x)2
− logP (y|f(x)) ≤ c.

For the Gaussian likelihoodP (y|f(x)) = N(y|f(x), σ2), (3)
is attained as equality withc = σ−2 for a function of the form
f(·) =

∑n
i=1 αiK(·,xi).

This theorem has appeared in [12], using earlier work on
parametric models [13]. A proof is given in Appendix I. The
bound depends on‖f‖2K , which states the intuitive fact that
a meaningful bound can only be obtained under smoothness
assumptions on the set of experts (note that the bound is
nonasymptotic and holds for any finiten). The constant
c, which bounds the curvature of the log likelihood, exists
for most commonly used exponential family likelihoods. For
logistic regression, we havec = 1/4, and for Gaussian
regression, we havec = σ−2, whereσ2 is the noise variance.

Returning to our introduction to information consistency in
Section I, we see that we have to analyze the termE[log |I +
cK |], which depends onK and the covariate distribution
µ. We call R = log |I + cK | the regret term. In the next
Section, we will provide a thorough analysis of the (expected)
regret term, obtaining tight information consistency results for
several practically relevant settings.

Note that Theorem 1 is a statement which holds for every
fixed f ∈ H, and the right hand side depends onf through
‖f‖2K . This is different from learning curve analyzes, where
f is assumed random according to a fixed prior, typically just
the one that the Bayesian method is using. For example, if the
likelihood isN(yi|f(xi), σ2) and f is a zero mean GP with
kernelK, a simple direct calculation shows that

Ef

[
D[P (y≤n|f) ‖P (y≤n)]

]
=

1
2

log |I + σ−2K |

so thatR controls the learning curve directly [14]. Our analysis
is more general, in that we do not assume thatf is drawn
from a simple, known prior distribution. On the other hand,
our result restrictsf to lie in H, which in fact is a null set
under the GP prior [11]. If‖ · ‖K is formally defined over
all functions inL2(X ) (with ‖f‖K = ∞ for f 6∈ H), then
Ef [‖f‖K ] = ∞ for GP sample paths.

III. A NALYSIS OF THE REGRETTERM

Theorem 1 provides a regret bound for Bayesian GP pre-
diction, competing against experts from the RKHS associated
with the covariance functionK of the GP. The bound depends
on the squared RKHS norm‖f‖2K , wheref is the competitor
function, and on the regret termR = log |I + cK |, the latter
depending onK and the covariatesx≤n. In this Section,
we collect some tools from spectral analysis which will be
used to obtain bounds onE[R] under assumptions onK
and the covariate distributionµ, thereby obtaining information
consistency results via Theorem 1.

It is clear that with no further assumption, the regret term
can always be made as large asΩ(n), rendering our result
trivial. For example, for an isotropic covariance function
K(x,x′) = K(‖x − x′‖) andK(r) → 0 (r → ∞), we can
choose allxi to be very far from each other, equivalentlyµ to
have very heavy tails, so thatK ∝ I for all n. In such extreme
cases, the smoothness constraint onf through the requirement
of a small‖f‖2K term does not imply any strong constraints
on the function valuesf(xi), so that even a set of smooth
competitors can represent anyy≤n very well. Our main result
implies thatR has to be large in such cases. In the remainder
of this paper, we are interested in more reasonable cases, in
which useful instances of our main result can be obtained.

SupposeK is continuous and Hilbert-Schmidt inL2(µ).
Note that we choose the covariate distributionµ as base
measure in what follows. The spectrum of the linear operator
with kernelK is discrete and non-negative [11]:

K(x,x′) =
∑
s≥0

λsφs(x)φs(x′). (4)

Here, {(λs, φs) | s ≥ 0} is a complete orthonormal eigen-
system ofK in L2(µ) with λ0 ≥ λ1 ≥ . . . ≥ 0, and
E[φs(x)φt(x)] = δs,t. The Hilbert-Schmidt assumption im-
plies that

∑
s λ

2
s < ∞, so λs decays rapidly to0, and the

series expansion ofK converges uniformly.
Lemma 1:SupposeK has an eigenexpansion (4). Then,

R = log |I + cK | ≤
∑
s≥0

log

(
1 + cλs

n∑
i=1

φs(xi)2
)
.

Moreover, suppose thatx≤n are drawn from a distribution
such that the marginal distribution of each componentxi is
µ. Then, theexpectedregret is bounded as follows:

E[R] ≤
∑
s≥0

log (1 + cλsn)

Proof: Let Λ = diag(λs)s, Φ = (φs(xi))i,s, so thatK =
limS→∞Φ·,≤SΛ≤SΦT

·,≤S uniformly overx≤n, where “≤ S”
is short for{1, . . . , S} (andS ≥ n). By continuity of log | · |,
we have that

log |I + cK | = lim
S→∞

log
∣∣∣I + cΛ≤SΦT

·,≤SΦ·,≤S

∣∣∣ . (5)

The last term is equal tolog |I+cΛ1/2
≤SΦT

·,≤SΦ·,≤SΛ1/2
≤S |. The

first statement follows by Hadamard’s inequality (which states
that log |M | ≤ log |diag M | for positive semi-definiteM ).

Consider the eigenexpansion ofK (4) with respect toµ.
We haveE[n−1ΦT

·,≤SΦ·,≤S ] = I by the orthonormality of the
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eigenfunctions. Using (5) and the concavity ofA 7→ log |I +
A|, we have

E [log |I + cK |] = lim
S→∞

E
[
log
∣∣∣I + cΛ≤SΦT

·,≤SΦ·,≤S

∣∣∣]
≤ lim

S→∞
log
∣∣∣I + cnΛ≤SE

[
n−1ΦT

·,≤SΦ·,≤S

]∣∣∣
=
∑
s≥0

log (1 + cλsn)

(6)

by Jensen’s inequality. In the first equality, we use
Lebesgue’s monotone convergence theorem, noting that|I +
cΛ≤SΦT

·,≤SΦ·,≤S | ≥ 1 is nondecreasing inS. This completes
the proof.

This result allows us to boundE[R], given that we know
the asymptotic behaviour ofλs as s → ∞. However, the
eigenvalues of the Mercer expansion ofK w.r.t. µ are known
explicitly only for a few special cases. Widom [5] gives a
powerful theorem which characterizesλs (s→∞) in a useful
way, under some conditions onK andµ. In the sequel,A ∼ B
means thatA/B → 1 in the limit which is given by the
context.

A kernelK is calledstationaryif K(x,x′) = K(x − x′),
and isotropic if K(x,x′) = K(‖x − x′‖). For example, the
Gaussian kernel (7) is isotropic. Bochner’s theorem [8] asserts
that the class of stationary covariance functions withK(0) = 1
(also called stationary correlation functions) is identical to the
class of characteristic functions of probability distributions:
K(r) = E[exp(iωT r)], whereω ∈ Rd is a random variable.
If the distribution ofω has a density, this is called thespectral
density2 λ(ω) of K(x). For isotropic covariance functions,
we haveK(r) = K(r), r = ‖r‖, and thereforeλ(ω) =
λ(η), η = ‖ω‖.

Widom’s theorem applies to isotropic covariance functions
with a spectral densityλ(η) which does not decay too fast
as η → ∞. Moreover, dµ needs to have a densityµ(x)
w.r.t. dx which is bounded and has bounded support3. The
theorem and its requirements are detailed in Appendix III. It
is interesting to note that the Gaussian kernel (7) doesnot fulfil
Widom’s requirements, since the tails of its spectral density
decay exponentially fast. We have the following theorem.

Theorem 2:LetK(r) be an isotropic covariance function in
Rd with strictly decreasing spectral densityλ(η), fulfilling the
requirements for Widom’s theorem (Appendix III). Suppose
that the covariate distributionµ has bounded support and a
bounded density, in thatµ(x) ≤ D, andµ(x) = 0 for ‖x‖ >
T . Then,

λs ≤ D(2π)dλ

(
2Γ(d/2 + 1)2/d

T
s1/d

)
(1 + o(1))

asymptotically ass→∞.
A proof is given in Appendix III. In the sequel, we apply

this result in order to boundE[R] for a class of kernels which
is frequently used in practice.

2We have thatλ(ω) = (2π)−d
∫

exp(−iωT r)K(r) dr .
3It is conjectured in [5] that this requirement may not be necessary, but the

proof given there uses the bounded support ofµ.

IV. A PPLICATIONS TOCONSISTENCY ANDCONVERGENCE

RATES

In this section, we apply the spectral techniques introduced
in Section III in order to bound the expected regret term
E[R] for several practically important settingsK, µ, thereby
obtaining information consistency rates via our main result.

A. Finite-Dimensional Covariance Functions

If K(x,x′) = xT x′, x,x′ ∈ Rd, we obtain the parametric
linear model:f(x) = wT x, w ∼ N(0, I) a priori. The
RKHS H is {x 7→ wT x}. Let X = (x1 . . .xn)T ∈ Rn,d,
then R = log |I + cXT X |. It is shown in [13] that if
‖x‖ ≤ 1 for all x, thenR ≤ d log(1+ cn/d). If the covariate
distributionµ has bounded support, we haveE[R] = O(log n),
therefore Bayesian prediction with the parametric linear model
is information consistent with rateO(n−1 log n). Note that
there is a linear dependence on the covariate dimensionality
d. A more general result, covering other parametric models,
is given in [15].

B. Gaussian Kernel, Gaussian Covariates

The Gaussian (or Radial Basis Function) kernel is

K(r) = exp
(
−br2

)
, r = ‖x − x′‖ (7)

for input pointsx ∈ Rd. b > 0 is a scale parameter, in that
b−1/2 is the typical length scale inX . The Gaussian kernel
is frequently used in Machine Learning for tasks whered
can be quite large. For small input dimensions common in
geostatistical applications, the Gaussian kernel is not suitable,
because it enforces an unreasonably high degree of smoothness
[8]. If we choose the covariate distribution to be Gaussian,
namelyµ(x) = N(x|0, (4a)−1I), the kernel eigenvalues are
known [16], and by using Lemma 1 we obtain a tight bound
on E[R]:

E [log |I + cK |] = O
(
(log n)d+1

)
.

Here, the leading constant is[log(1 + 2a/b)]−d, which de-
creases ina/b, being the squared ratio of the length scale of
the kernel and the standard deviation ofµ. This makes sense:
if a/b is small, typical functions (with RKHS norm ofO(1))
change on average rapidly and significantly within the typical
range ofµ. In other words, the penalization of such rapid
variations is weaker under the RKHS norm, and therefore the
expected regret term has to be larger. Ifa/b is large, typical
functions do not change much in the typical range ofµ, which
justifies a small expected regret term.

A proof is provided in Appendix II. The result matches
our intuition in that the regularization imposed by the RKHS
norm becomes weaker with a higher input dimensionality (the
RKHS for dimensiond is actually the tensor product ofd
copies of the RKHS for dimension1). To conclude, even
though the RKHSH for this kernel is a space dense in the
continuous functions, the expected regret is very small. This
can be explained by the strong smoothness constraint enforced
via ‖ · ‖K , which grows quickly with irregularities inf . With
a view on Section I and Theorem 1, we see that Bayesian GP
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prediction with the Gaussian kernel is information consistent
in any dimensiond, and for all a, b > 0, and we have an
information rate bound of

1
2n
‖f‖2K +O

(
n−1(log n)d+1

)
.

C. Mat́ern Kernels, Bounded Support Covariates

Recall that isotropic correlation functions are characteristic
functions of probability distributions. An important class of
isotropic kernels is obtained this way from Student-t distribu-
tions, it is referred to asMatérn class (see [8] for details; we
use [7], Sect. 4.2.1 here):

K(r) =
21−ν

Γ(ν)
(r/α)νKν(r/α), α > 0, ν > 0 (8)

whereKν is a modified Bessel function. The spectral density
is

λ(η) = fα,ν(η) =
Γ(ν + d/2)
πd/2Γ(ν)

αd
(
1 + (αη)2

)−ν−d/2
(9)

which is the multivariatet-density inRd with 2ν+d degrees of
freedom and scale matrixα−2I. While α is a scale parameter,
the parameterν directly controls the smoothness of sample
paths of the process: they arel times differentiable for some
version of the process iffl < ν. Forν = 1/2,K(r) ∝ e−r/α is
the Ornstein-Uhlenbeck kernel, corresponding GPs are Markov
processes, and therefore very irregular. On the other hand, if
ν → ∞ andα = l(2ν)−1/2 for fixed l, thenK(r) becomes
the Gaussian kernele−(r/l)2 , whose sample paths are analytic
functions.

It is easy to see thatλ = fα,ν fulfils the conditions of
Widom’s theorem. For largeη, λ(η) ∼ Aη−(2ν+d), and from
Theorem 2 we obtainλs = O(s−(2ν+d)/d) if µ has bounded
support and density. We show in Appendix IV that this implies
that

E[R] = O
(
nd/(2ν+d)(log n)2ν/(2ν+d)

)
. (10)

Note that the regret term is much larger than for the Gaus-
sian kernel. It decays the faster, the larger the smoothness
parameterν becomes, or the smaller the dimensiond of the
input space. Recalling Section I and Theorem 1, we see that
Bayesian GP prediction with the Matérn class is information
consistent in any dimensiond and for anyν > 0, and we have
an information rate bound of

1
2n
‖f‖2K +O

(
n−2ν/(2ν+d)(log n)2ν/(2ν+d)

)
. (11)

Note that the leading constant in the bound onE[R] just
derived depends on the sizeT of the support ofµ. In fact,
the dependence is as large asT 2ν+d. If µ has unbounded
support, we could try to obtain insight into the setupK, µ by
definingµT (x) = µ(x)I{‖x‖≤T}, then studying the behaviour
of EµT

[R]. The result obtained above is not useful in that
respect.

D. Matérn Kernels. General Covariates

Let K be the Mat́ern kernel with spectral densityλ = fα,ν ,
and suppose thatµ(x) is bounded, but does not necessarily
have bounded support. In this case, Theorem 2 is not useful.
On the other hand, Widom’s theorem we used so far has been
proven only forµ of bounded support, so that it cannot be
used directly in order to obtain a bound onE[R]. We can still
obtain some insight into the pairK, µ through the following
theorem.

Theorem 3:Let K(r) be from the Mat́ern class, with
spectral densityλ(η) = fα,ν(η). Suppose that the covariate
distributionµ has a bounded density, such that∫

I{‖x‖≤T}µ(x)d/(2ν+d) dx ≤ C̃,

where C̃ is a constant independent ofT > 0. Define
the bounded support measureµT with density µT (x) =
I{‖x‖≤T}µ(x), and let {λ(T )

s } be the spectrum ofK w.r.t.
µT . Then, for allT > 0 large enough and for allδ > 0, there
exists as0 such that

λ(T )
s ≤ C(1 + δ)s−(2ν+d)/d ∀s ≥ s0.

Here,C is a constant independent ofT , δ.
A proof is given in Appendix IV. While the terms−(2ν+d)/d

is the same as obtained from Theorem 2, the present theorem
is stronger (under an additional assumption onµ), in that the
leading constant does not grow withT . However,s0 (defining
the speed of convergence) may depend onT , so the theorem
does not imply any strong statement on the asymptotics ofλs.
Some examples forµ admissable in Theorem 3 are given in
Appendix IV: any Gaussian, or any Student-t with smoothness
parameterν2 > ν (tails of µ lighter than tails ofλ). On the
other hand, ifν2 ≤ ν, µ is not admissable.

We can use Theorem 3 in order to obtain a bound onEµT
[R]

of the same form as (10). While the leading constant in this
expression does not depend onT , the speed of convergence
may do so, and at present we cannot infer a result forEµ[R]
(if suppµ is unbounded). In the same sense, the information
rate bound of (11) holds true for any singleT > 0. Note that
for large enoughT , µT can be renormalized as probability
measure, with negligible effect on the constants. Obtaining a
rate bound for Mat́ernK andµ of unbounded support remains
an important point for future work.

V. CONCLUSION

We stated a regret bound for cumulative log loss of Bayesian
GP prediction, compared to experts from the RKHS of the
prior covariance function, and we gave a fairly elementary
proof. We argued how this result can be used to obtain tight
information consistency results and rate bounds, namely by
bounding the expected regret termE[log |I + cK |], whereK
is the covariance matrix for the covariatesx≤n. We gave a
number of examples for classes of covariance functions of
central importance in practice, bounding the expected regret
by way of the covariance operator eigenvalues, which are
known in some cases or can be obtained asymptotically in
others. Our results depend strongly on parameters of the
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covariance function and the covariate distribution, and they
provide a novel insight into regularization characteristics of
these parameters.

Many results about consistency of nonparametric Bayes
predictors are known [1], [4], [15], [17], [18]. A strong
notion of consistency is that the posterior has to concentrate
on arbitrarily small environments (w.r.t. some metric) of the
data-generating functionf . Barron et.al. [1], [4] give such
consistency results for general nonparametric methods, but
they show that apart from a simple local condition on the
prior, namely that Kullback-Leibler environments of the true
f have to be given positive prior mass, additional non-intuitive
global conditions are necessary for posterior consistency. The
weaker notion of information consistency is used in [1], [15]
and is shown to have nicer properties. In contrast to this work,
our results here are specific to Bayesian Gaussian process
prediction, although part of our argument holds for general
Bayesian conditional prediction. This has the advantage that
our results depend strongly on parameters of the model, such
as the prior covariance function or the assumed covariate
distribution, which have a clear meaning for practitioners
working with these models. Since our results give a novel
interpretation of these parameters in terms of regularization
properties, they may serve as guidelines for prior choice.

We obtained information convergence rate bounds in a fairly
direct manner, and these depend strongly on the specifics
of the model. In contrast, rates are very difficult to obtain
for stronger notions of consistency [19]. Zhang [18], [20]
obtains convergence results and rates using the same convex
duality relationship we do here. His results hold for general
nonparametric methods, and not surprisingly he requires a
global condition on the prior as well. His rate bounds and
global condition depend on upper metric entropies, which
are very hard to work with in a concrete case such as ours
here. Opper and Vivarelli [14] provide bounds onE[R] for
the Gaussian kernel, their motivation is thatR controls the
learning curve of GP regression with Gaussian noise (see end
of Section II).

APPENDIX I
PROOF OFTHEOREM 1

In this section, we provide a proof for Theorem 1. We begin
with the representer theorem [11], which is proved here for
completeness.

Lemma 2 (Representer Theorem):Let H be the RKHS for
kernel K, and let ρ(x≤n, f) be a functional ofx≤n =
{x1, . . . ,xn} andf ∈ H. Let Hn be the span of{K(·,xi)}.
If ρ(x≤n, f) = ρ(x≤n, (f(xi))i), then:

inf
f∈H

ρ(x≤n, f) + ‖f‖2K = inf
f∈Hn

ρ(x≤n, f) + ‖f‖2K .
Proof: Since Hn ⊂ H, one direction is trivial. For the

other one, letf ∈ H, and letf̃ be the orthogonal projection
of f onto Hn w.r.t. ‖ · ‖K . Now, f(xi) = f̃(xi) + (f −
f̃ , K(·,xi))K = f̃(xi), becausef − f̃ is orthogonal toHn.
Here, we used the reproducing property ofK. Therefore,
ρ(x≤n, f) = ρ(x≤n, f̃), and ‖f̃‖K ≤ ‖f‖K , which proves
the reverse direction.

We now prove our main result. LetHn be the span of
{K(·,xi)}. Fix f(·) =

∑
i αiK(·,xi) ∈ Hn. We start with

the following inequality:

− logPbs(y≤n) ≤ EQ

[
− logP (y≤n|u(·))

]
+ D[Q ‖Pbs]

= −
n∑

i=1

EQ [logP (yi|u(xi))] + D[Q ‖Pbs]

(12)

whereQ, Pbs are distributions over the functionu(·). This
inequality is an instance of the following Fenchel-Legendre
duality relationship [21], [22]:

EQ[g(v)] ≤ log EP

[
eg(v)

]
+ D[Q ‖P ]

where P, Q are distributions overv . The inequality is an
equality for dQ ∝ egdP . In our case,P is the zero mean
GP prior Pbs, and Q is a GP constructed as follows. Let
τ2 > 0 (to be specified below), and letQ be the posterior
from a GP model with priorPbs and Gaussian likelihood term∏n

i=1N(ŷi|u(xi), τ2), where ŷ = (K + τ2I)α. We have
EQ[u(·)] = f(·). Let u = (u(xi))i.

SincedQ(u(·)) ∝ N(u|ŷ , τ2I)dPbs(u(·)), we have that4

D[Q(u(·)) ‖Pbs(u(·))] = D[Q(u) ‖Pbs(u)], and if B = I +
τ−2K , then

D[Q ‖Pbs] = D[Q(u) ‖Pbs(u)]

= (1/2)
(
log |B |+ trB−1 − n+ αT Kα

)
.

By expanding − logP (y|u(x)) to second order around
EQ[u(xi)] = f(xi), we have EQ[− logP (yi|u(xi))] ≤
− logP (yi|f(xi)) + (c/2)VarQ[u(xi)], so that

EQ

[
− logP (y≤n|u(·))

]
≤ − logP (y≤n|f(·))+ c

2
trVarQ[u].

Here, VarQ[u] = (K−1 + τ−2I)−1 = KB−1. Combining
the bounds gives

− logPbs(y≤n) ≤ − logP (y≤n|f(·)) +
1
2
‖f‖2K

+
1
2
(
c trKB−1 + log |B |+ trB−1 − n

) (13)

where we usedαT Kα = ‖f‖2K (2). Minimizing over τ2

results inτ2 = c−1 (using the spectral decomposition ofK ),
and plugging this into (13) proves the theorem in the restricted
case

inf
f∈Hn

− logP (y≤n|f(·)) +
1
2
‖f‖2K .

Since the first term depends onf only through thef(xi),
Lemma 2 allows us to take the infimum over all ofH instead.
This completes the proof of the inequality.

Now, suppose thatP (y|f(x)) = N(y|f(x), σ2). There are
two bounding steps in the proof: the convex duality argument
of (12), and the quadratic expansion of− logP (y|f(x)). The
latter is an equality in this case. We noted above that the
convex duality step is an equality fordQ ∝ egdP , where
g = logP (y≤n|f). This Q is constructed as above ifα =
(K +σ2I)−1y≤n, so that equality holds for the corresponding
f =

∑
i αiK(·,xi).

4The relative entropy is defined asD[Q ‖P ] = EQ[log(dQ/dP )],
dQ/dP the Radon-Nikodym derivative, ifQ � P , and ∞ otherwise
(Theo. 1.31 in [23]). In our case,dQ/dP depends onu only.
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APPENDIX II
REGRET FORGAUSSIAN KERNEL

In this section, we bound the expected regretE[R] for
the Gaussian kernelK and Gaussian covariate distributionµ
(see Section IV-B). We haveK(r) = exp(−br2), µ(x) =
N(x|0, (4a)−1I). In this case, the eigenexpansion ofK w.r.t.
µ (4) is known explicitly ford = 1 [16]:

λl =

√
2a
A
Bl, g =

√
a2 + 2ab, A = a+ b+ g, B =

b

A
.

We first need to obtain a bound on the eigenvalues in the gen-
eral case ofd ≥ 1. We use the fact thatK(x) =

∏d
j=1K(xj)

and µ(x) =
∏d

j=1 µ(xj). Therefore, it is clear that the
eigenvalues ofK in Rd are d-products of the eigenvalues
for the scalarK, thus(2a/A)d/2Bl appears with multiplicity
N = N(l, d) =

(
l+d−1
d−1

)
. N is the number of ordered sets

(n1, . . . , nd), ni ≥ 0 with
∑

i ni = l. This can be seen by
noting thatN(l, 2) = l + 1 andN(l, d+ 1) =

∑l
i=0N(i, d).

We need the boundN(l, d) ≤ ld − (l − 1)d for d ≥ 2, l ≥ 2.
The proof is elementary, using the semantics ofN(l, d). Now,
consider the sequence of eigenvaluesλs for d dimensions,
consisting of the valuesvl = (2a/A)d/2Bl with multiplicity
N(l, d). SinceN(1, d) = d > 1, we alter the sequenceλs by
removingd−1 of the replicas ofv1. For this altered sequence,
we have that

λs ≤ (2a/A)d/2Bs1/d

, s ≥ 0.

To see this, split the ranges ≥ 0 into blocks of sizeN(l, d)
corresponding to the value ofvl. Now, for s = (l − 1)d +
1, . . . , ld we have thatvl ≤ (2a/A)d/2Bs1/d

, becauseB < 1.
Furthermore, we haveN(l, d) ≤ ld − (l− 1)d. We effectively
replace thevl block of sizeN(l, d) by a block with more
elements, whose prefix is a pointwise upper bound.

The modification of theλs sequence leads to an additional
O(log n) term in the final result, which is subdominant and
will not be mentioned in the sequel. Let̃c = c(2a/A)d/2.
Using Lemma 1, we have that

E[R] ≤
∑
s≥0

log (1 + cnλs) ≤
∑
k≥0

log
(
1 + c̃nBk1/d

)
. (14)

B is strictly decreasing in4a/b, with B → 1 asa/b→ 0. Let
α = − logB > 0. We split the right hand side of (14) into
two partsS1 + S2. For k0 = d((log n)/α)de, we have

S1 =
k0−1∑
k=0

log
(
1 + c̃nBk1/d

)
≤ α−d(log n)d log(1 + c̃n)

= O
(
(log n)d+1

)
.

Next, nBk
1/d
0 ≤ 1, so that

S2 =
∑
k≥k0

log
(
1 + c̃nBk1/d

)
≤ c̃n

∑
k≥k0

Bk1/d

≤ c̃
(
1+

n

∫ ∞

k0

exp
(
−αx1/d

)
dx
)
≤ c̃

(
1 + dα−dnΓ (d, log n)

)
.

Here, we first uselog(1 + x) ≤ x, then bound the series by
an integral and make use ofk1/d

0 ≥ (log n)/α.

Γ(d, β) =
∫ ∞

β

e−ttd−1 dt

is the incomplete Gamma function (tail version). We use the
substitution t = αx1/d and the fact thatβ 7→ Γ(d, β) is
nonincreasing. SinceΓ(d, β) = (d − 1)!e−β

∑d−1
k=0 β

k/k! for
d ∈ N (Eq. 8.352.2 in [24]), we have

S2 ≤ c̃

(
1 + d!α−d

d−1∑
k=0

(log n)k

k!

)
= O

(
(log n)d−1

)
thus the expected regret for the Gaussian kernel is
O((log n)d+1). The leading constant isα−d ≈ [log(1 +
2a/b)]−d. While the leading term does not depend onc, there
is a term((log n)/α)d(log c), clarifying the dependence onc.

APPENDIX III
WIDOM ’ S THEOREM

In this section, we state a theorem of Widom [5] and show
how Theorem 2 is derived from this result. More details can
be found in [25].

Let K(r) be an isotropic covariance function with spectral
densityλ(ω), i.e.

λ(ω) = (2π)−d

∫
K(r)e−iωT r dr.

Note thatλ(ω) = λ(η), η = ‖ω‖. Widom requires that
λ(η) ≥ 0, and that its tails do not decay too fast. First, as
η →∞: λ(η + o(η)) ∼ λ(η). Second:λ(η) = o(λ(o(η))) for
any o(η) →∞, o(η)/η → 0. These are fulfilled for common
spectral densities ifλ(η) does not decay faster thanpoly(1/η).
Moreover, the distributionµ has to have a bounded density
µ(x) and bounded support. Let

ψ(ε) = (2π)−d

∫
I{µ(x)λ(ω)>(2π)−dε} dxdω

and s = s(ε) = min{s′ |λs′ > ε}. Widom’s theorem states
thatψ(ε) ∼ s(ε) asε→ 0. Note that ifψ is strictly decreasing,
and if ψ−1(s + o(s)) ∼ ψ−1(s), then this implies thatλs ∼
ψ−1(s).

We now prove Theorem 2. The support ofµ is contained in
the ball{x | ‖x‖ ≤ T}, whose volume isVT = πd/2Γ(d/2 +
1)−1T d. Furthermore,µ(x) ≤ D. We can upper boundψ(ε)
by replacingµ by µU (x) = DI{‖x‖≤T} ≥ µ(x). We have

ψ(ε) ≤ (2π)−dVT

∫
I{λ(ω)≥(2π)−dD−1ε} dω

= (2π)−dVT

∫
I{‖ω‖≤λ−1(γε)} dω = (2π)−dVTVλ−1(γε)

where γ = (2π)−dD−1. Here, ε is taken small enough, so
thatλ−1(γε) exists. We equate the right hand side withs and
solve forε, noting thatλ−1 is strictly decreasing.



INFORMATION CONSISTENCY OF NONPARAMETRIC GAUSSIAN PROCESS METHODS 9

APPENDIX IV
THE MATÉRN CLASS

In this section, we boundE[R] for the Mat́ern class (8) with
parametersα, ν. More details are given in [25]. Recall that
there existsA, s̃0 such thatλs ≤ As−(2ν+d)/d for all s ≥ s̃0.
We use Lemma 1 and split the sum overs into two parts
S1 + S2, whereS1 runs up tos0 = nd/(2ν+d)(log n)τ , andτ
is chosen below. Sinces0 grows withn, we can assume that
s0 ≥ s̃0. Then,

S1 =
s0−1∑
s=0

log(1 + cnλs) = O
(
nd/(2ν+d)(log n)1+τ

)
,

sinceλs ≤ K(0)1/2. Furthermore,

S2 =
∑
s≥s0

log(1 + cnλs) = O

n∑
s≥s0

s−(2ν+d)/d


= O

(log n)−τ(2ν+d)/d
∑
s≥s0

(s/s0)−(2ν+d)/d

 .

We lower-bounds/s0 by s0 repetitions of1, 2, . . . , thus

S2 = O

(log n)−τ(2ν+d)/ds0
∑
k≥1

k−(2ν+d)/d


= O

(
nd/(2ν+d)(log n)τ(1−(2ν+d)/d)

)
because the series converges forν > 0 (it is a zeta function).
Choosingτ = −d/(2ν + d), we have

E[R] = O
(
nd/(2ν+d)(log n)2ν/(2ν+d)

)
.

Note that the leading constant is an affine function ofA, the
leading constant in the eigenvalue asymptotics.

Next, we prove Theorem 3. Recall Appendix III, we use
ψT (ε) for the clipped measureµT . Let q = ν + d/2, y =
1+(αη)2. Transforming to polar coordinates, then toy, gives

ψT (ε) ∝
∫
‖x‖≤T

∫ ∞

1

I{yq<ρµ(x)}(y − 1)a dy dx

whereρ = (c1ε)−1, c1 a constant, anda = (d− 2)/2 > −1.
Integrating outy gives

ψT (ε) ∼ C1ρ
(a+1)/q

∫
I{‖x‖≤T}µ(x)(a+1)/q dx

whereC1 is a constant. The latter integral is bounded byC̃,
so ψT (ε) ∼ C2ε

−d/(2ν+d), C2 = C1C̃c
−d/(2ν+d)
1 . If C =

C
(2ν+d)/d
2 , our statement follows from Widom’s theorem.
Finally, we give some examples forµ fulfilling the assump-

tions of Theorem 3. Ifµ(x) = N(µ,Σ) is a multivariate
Gaussian, then∫

I{‖x‖≤T}µ(x)(a+1)/q dx

= |2πΣ|ν/(2ν+d)

(
2ν + d

d

)d/2

EN(µ,(2ν+d)/dΣ)

[
I{‖x‖≤T}

]
where the latter expectation is bounded above by one, giving
a bound independent ofT , which is tight asT →∞.

Next, let µ(x) = fα2,ν2(‖x‖) be a Student-t density. Let
q2 = ν2 + d/2, σ = q2/q. The same maths as above gives∫

I{‖x‖≤T}µ(x)(a+1)/q dx ∝
∫ T̃

1

z−(a+1)σ(z − 1)a dz

with T̃ = 1 + (α2T )2. We employ the binomial theorem to
write (z−1)a as polynomial inz of degreea. If ν2 > ν, then
σ > 1, so all termszκ in the integrand haveκ < −1, and
the final value can be bounded independently ofT . If ν2 = ν,
the integrand featuresz−1, giving a termlog T̃ . If ν2 < ν, the
final value contains̃T (a+1)(1−σ). We see thatµ is admissable
for ν2 > ν (lighter tails thanλ), but inadmissable forν2 ≤ ν.
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