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Information Consistency of Nonparametric Gaussian
Process Methods

Matthias W. Seeger, Sham M. Kakade, and Dean P. Foster

Abstract—This work has been submitted to the IEEE for assumptions about nature’s choice are encoded fori@r
possible publication. Copyright may be transferred without distribution P,,(f) over F. This distribution is conditioned

notice, after which this version will be superseded. on observed data in order to obtain thesterior distribution
Bayesian nonparametric models are widely and successfully

used for statistical prediction. While posterior consistency prop- (T, P(ysl f(2:))]dPos(f)
erties are well studied in quite general settings, results have dPos(flyrs .- yn) = j‘[l—[n Pyl f' (@) dPys (1)
been proved using abstract concepts such as metric entropy, and i=1 4 \Yil] T bs
they come with subtle conditions which are hard to validate from which thepredictive distributionis obtained as
and not intuitive when applied to concrete models. Furthermore,
convergence rates are difficult to obtain. _

By focussing on the concept of information consistency for Pbs(y"+1|y§n) = /P(Z/n+1|f($n+1))dpbs(f\ygn)

Bayesian Gaussian process models, consistency results and conj . Lo .
vergence rates are obtained via a regret bound on cumulative log thus as expectation of the likelihood w.r.t. the posterior. Note

loss. These results depend strongly on the covariance functionthat this strategy has strong practical and theoretical merits,
of the prior process, thereby giving a novel interpretation to even if nature doesot choosef according toP,,. Barron’s

penalization with reproducing kernel Hilbert space norms and to  work [1] can be understood as trying to characterize Bayesian
commonly used covariance function classes and their parameters. prediction performance depending on the prior specification,

The proof of the main result employs elementary convexity . L : . .
arguments only. A theorem of Widom is used in order to obtain assuming that the true likelihood is known, but making mini-

precise convergence rates for several covariance functions widely Mal or no assumptions about nature’s true choicg .of
used in practice. An intuitive way to information consistency goes via se-

Index Terms—Bayesian prediction, eigenvalue asymptotics, uéntial prediction. Ley<; = {y1, ..., v}, andz<; accord-
Gaussian process, information consistency, nonparametric statis- ingly. An expert prediction strategparameterized by € 7
tics, online learning, posterior consistency, regret bound IS

P(y<,lf) =[] Pl f ().
I. INTRODUCTION i=1

N this correspondence, we are interested in methods pfd expert predicts®(y;|f(z;)) independently for each unseen

dicting a responsg € ) from a covariater € X. Given Point, using a fixed function. The Bayesian prediction strategy
some class of functiond = {f : X — R} and a likelihood is mixing over experts, in the sequential case by using the
conditional distributionP(y|f(z)) over ), we assume that predictive distributions”,(y;|y.;), so the mixing distribution
data yi,...,yn, given zi,...,x,, is generated by natureiS always given by the posterior for all observed data. Now,
picking f, then samplingy; ~ P(-|f(x;)) independentl. suppose that. a prediction strategy, outputt@®§) in order
Note that covariates are by definition always given at pré@ predicty;, incurs thelog loss —log Q(y;) for each single
diction time, and in the sequel all distributions are implicitlrediction, and the cumulative log loss overall:

conditional on all necessary covariate instances. We assume n
that the covariates are independently drawn from a distribution Lo(y<,) = Z —log Q(yily<;)-
du(z), which will not be modelled. - i=1

The prediction task may be of batch natljre, given SOMe For an expertf1 the cumulative |Og loss iif(y<n)
training data{ (;,y;) |i = 1,...,n}, predicty, . for unseen _jog P(y_ |f), while for the Bayesian strategy we have that
xn41, O of sequential nature.e. predicty;, givenzy, ...« I, (y. )= —log Py (y.,) by the chain rule. The Bayesian
andyi,...,y;—1 respectively, fori = 1,...,n. The Bayesian strategy has been analyzed under the log loss setting by several

prediction strategyis the same in both situations. Initialreasearchers [2], [3].

L rediction str nd |
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1In some settings, it is advisable to parameterize nature’s choice by mgre I F H h . .
than one real-valued function. While our results can be extended to this ciek all f € comp- Here, the expectation is over

straightforwardly, we focus on single function models for simplicity. <, ~ p", and D[P || P2] = [(logP — log P)dP;
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is the relative entropy (or Kullback-Leibler diver- we develop tools in order to bound the expected regret featur-
gencg. Note that n 'E[D[P(y.,|f) || Qy<,)]] = ing in our result. These tools are applied to several classes of
n=13"  ED[P(yilf(z:) || Q(wily<;)]], which is a covariance functions frequently used in practice in Section IV.

type of Cesaro average risk. Information consistency seefsnclusions are given in Section V, and the Appendix contains
a fairly weak mode of consistency, but Barron [1] arguedetails of proofs.

that some stronger notions do have shortcomings which are

unintuitive at the least. For example, while the average of II. MAIN RESULT

the left hand side of (1) ovef ~ P, iS nonincreasing, . ) .
the individual Kullback risk D[P (y;|f(2:)) | Pos(yily ;)] A Ggusswm proc.eséGP) model is defined on .the spage
can increase for somé even if Py, (f) is large. And in of continuous functionst — R. A zero mean GP is a random

: : o o
order to ensure that for any, the posterior P(f|y,) f“nCt'Or/‘ fer W'th/ Elf(z)] = 0 and E[f(z)/(2)] =
concentrates on arbitrary small neighborhoods fofw.r.t. (@) for all 2" € X. Gaussian processes have the
Hellinger, Kullback, or some other metric) [4] unintuitiveProperty that all associated finite dimensional distributions
global conditions onP,, are required (Barron [1] gives an&® Gaussian again. Namely, lef, ...,z be azbnrr;ry, and
example of posterior inconsistency, wheg, (Fiaq) = 1/2, consider the random vectof = (f(w;)); € R". Then, f
but Pys(Fraaly<,) — 1 almost surely, andi(f, f') = 1 for has a multivariate Gaussian distribution with me@nand
all f' € Fyoq, data coming fromy). We focus on information Covariance matrixx (z;, a;))i,; € R*%. For details on Gaus-
consistency in what follows sian processes in Machine Learning, see [6], [7]. Gaussian
In order to relate information consistency to sequenti@f°C€SS models form a major class of nonparametric methods
prediction under cumulative log loss, note that which are routinely used for spatial statistics applications in
’ geostatistics and remote sensing [8]. Bayesian GP prediction
D [P(y<nlf) | Pos(y<n)] = E [Los(y<,) — Lp(y<,)] has been pioneered by O’Hagan [9], and has been applied
. to many problems in Machine Learning. We note that while
where the expectation IS oV, ~ PC[f) w(ej can kl)lound Bayesian GP prediction is analytically tractable only for a
Lbs(ySnr)],_ _Lf@l/_Sn). t;mformly over ally,,, an dfor allf € Gaussian likelihood, Markov chain Monte Carlo techniques
Fcomp: tis implies information consistency an convergenqﬁay be used to sample from the posterior, or one of several

rate bounds. . variational approximation techniques proposed in Machine
Our main result can be stated as follows. Consider Laearning may be applied.

Bayesian Gaussian process prediction stratégy where the The covariance functiork’ of a GP is a positive semi-
prior distribution P, (f) is a zero mean Gaussian process WitBefinite form, in that all induced covariance matricks are
covarian(_:e function(z, z'), _and letr be_the reproducing always positi’ve semi-definitew” Kv > 0 for all vectorsw.
kernel Hilbert space determined by, haV}ng norm||fllx. A reproducing kernel Hilbert spacéRKHS) [10], [11] of
Furthermore, let the curvature eflog P(ylf(x)) Wrt f(z)  fnctions ¥ — R is associated withs as follows. Consider
be bounded by > 0 for anyy € ). We show that the linear space of all finite kernel expansions (over any
x1,...,x,) of the form f(-) = Y0 | ;K (-, x;), with the

1 1
D [Pyl | Prolyen)] < 5l + gloglT+ K| ol 8

for any f € H, where K = (K(z;,x;));; € R™ is

the covariance matrix depen_dlng an _and T<n. Therefore, Z K (- x;), Z BiK(-,x}) = Z a3 K (i, ).

Bayesian GP prediction is information consistent w.tt. P J i

if n'Efllog|I + ¢K]|] — 0 (n — o0), where the latter _ _ _

criterion depends on the covariance functidn and the The RKHS 7 is the completion of this space. By con-

covariate distribution. only. We give a range of examples forStruction, H contains all finite kernel expansionf(-) =

practically relevant covariance functions and restrictions hi1 @K (,@;) with

p, for which information consistency and convergence rates If1% = aTKa, Ki;= Kz, z;). @)

can be established along this path, namely by analyzing the ’

term Ellog|I + cK|] asymptotically asn — oo. To this The characteristic property df{ is that all (Dirac) evalua-

end, we utilize the Mercer eigenexpansion of the covariantien functionals areepresentedn H itself by the functions

function K w.r.t. the measurely;, and a powerful theorem K (-, x;), meaning that(f, K(-,x;))x = f(x;). This repro-

by Widom [5] in order to obtain asymptotic expressions foducing propertymeans that convergence in norm#fimplies

the eigenvalues. To the best of our knowledge, our approgmbintwise convergence, so afl € H are pointwise defined.

to obtain sharp information convergence rates for Gaussilmtuitively, H is a space withinL,(X) of reasonably well-

process nonparametric prediction methods is novel. The regoetaved functions. In general, it is the case that functions of

term n~'E[log|I + ¢K|] and also our bounds for commonlarger RKHS norm show a rougher and more irregular be-

kernel classes depend explicitly on parametersg<ofind i, haviour, and|| f||% is commonly used as smoothness penalty.

thereby giving new characterizations of these regularizatiime RKHSH turns out to be the largest competitor space of

parameters in terms of convergence rates. experts for which our results are meaningful. We note that
In Section Il, we state our main result, a regret bound fdor most kernels used in practice, and in fact for all infinite

cumulative log loss of Bayesian GP prediction. In Section lljimensional kernels mentioned hefg,is dense in the space

K
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of continuous functions restricted to a compact domait’in
Also note that the “complexity’| f|| x assigned to a function

[1l. ANALYSIS OF THE REGRETTERM
Theorem 1 provides a regret bound for Bayesian GP pre-

[ depends on characteristics Af, and our results render agjction, competing against experts from the RKHS associated

new interpretation for this dependency.

with the covariance functio&’ of the GP. The bound depends

Theorem 1 (Main Resul)tet P, be the Bayesian GP on the squared RKHS norifff||%, where f is the competitor
prediction method, configured by a zero mean Gaussian pfgnction, and on the regret terid = log |I + cK |, the latter
cess prior with covariance functioR. Let (z<n,y<,) be @ depending onkK and the covariates<,,. In this Section,
sequence fronit’ x )" and f be a function from the RKHS we collect some tools from spectral analysis which will be
H associated with. Then, used to obtain bounds oR[R] under assumptions o
and the covariate distribution, thereby obtaining information
consistency results via Theorem 1.

It is clear that with no further assumption, the regret term
can always be made as large @én), rendering our result
trivial. For example, for an isotropic covariance function
K(z,2') = K(|Jz —2'||) and K(r) — 0 (r — o0), we can
choose allz; to be very far from each other, equivalentlyto
have very heavy tails, so th&f I for all n. In such extreme
cases, the smoothness constraintfahrough the requirement
of a small||f||% term does not imply any strong constraints
on the function values (x;), so that even a set of smooth
competitors can represent agy,, very well. Our main result
is attained as equality with = o2 for a function of the form impligs that 72 has 1o b(_a large in S.UCh cases. In the remainder.

of this paper, we are interested in more reasonable cases, in

fO) =i K (- ;). . : ) ,
| = . . . which useful instances of our main result can be obtained.
This theorem has appeared in [12], using earlier work on Supposek is continuous and Hilbert-Schmidt ifia (1).

parametric models [13]. A proof is given in Appendix I. Th . o
bound depends ofif||%, which states the intuitive fact thatei\I ote that' we choose the covariate d|str|but|gnas base
measure in what follows. The spectrum of the linear operator

a meaningful bound can only be obtained under smoothnes kermel K is discrete and non-negative [11]:

WI
K(iL’, CL'/) = Z Ashs (iL‘)¢3<iL'/)

assumptions on the set of experts (note that the bound'is
s>0

1
108 Pou(y<,) < — 08 Py, | ) + 21171
1
+ 3 log [T + cK|

where|| f||x is the RKHS norm off, K = (K(x;,x;))i; €
R™" is the covariance matrix over the input sequencs,,
andc > 0 is a constant such that for ajle Y, f(z) € R:

2

d
W —log P(y|f(x)) < c.

For the Gaussian likelihoo#(y|f(x)) = N(y|f(x),0?), (3)

nonasymptotic and holds for any finite). The constant

¢, which bounds the curvature of the log likelihood, exists
for most commonly used exponential family likelihoods. For . .
logistic regression, we have 1/4, and for Gaussian Here, {(As,é.)|s = 0} is a complete orthonormal eigen-

- _ : : ; system of K in L with Ay > XAy > ... > 0, and
regression, we have= o2, whereco? is the noise variance. E>E¢ (@)n()] = 62(tM)The Hilt())ert_-ScﬁmEit assumption im-
Returning to our introduction to information consistency in,:’ ° , v .

lies thatd~_ A2 < oo, so A\, decays rapidly to), and the

Section |, we see that we have to analyze the tBfiag |I + phe . d
. . ... series expansion ak converges uniformly.

c¢K|], which depends onK and the covariate distribution Lemma 1: SupposeX has an eigenexpansion (4). Then

u. We call R = log|I 4+ ¢K| the regret term In the next -=2Upp 9 P ' '

Section, we will provide a thorough analysis of the (expected) < )

regret term, obtaining tight information consistency results for R=
several practically relevant settings.

Note that Theorem 1 is a statement which holds for eveloreover, suppose that<, are drawn from a distribution
fixed f € H, and the right hand side depends frthrough such that the marginal distribution of each components
|l fII%. This is different from learning curve analyzes, wherg. Then, theexpectedegret is bounded as follows:

f is assumed random according to a fixed prior, typically just

the one that the Bayesian method is using. For example, if the E[R] < ;)bg (1+cAsn)

. . 9 . A B

Kool . a simipe direct calcuiaton shows that | PO0F LeLA = disg(A)es & = (6.(0):. 50 thatk
’ P limg_.co ®.,<sA<s®’_ 5 uniformly overz<,,, where *< 5"

is short for{1,...,S} (andS > n). By continuity oflog | - |,

we have that

(4)

14 chg Z (bs(:ci)Q

i=1

log [T +cK| < Zlog
s>0

By [DIP(<, 1) || Ply<,)]] = 5log|T + 07K
so thatR controls the learning curve directly [14]. Our analysis log [T + cK| = Slim log [T + CASS(I)TSS@'»SS . O
is more general, in that we do not assume tfias drawn -
from a simple, known prior distribution. On the other handlhe last term is equal tb)g|I+cA1</S2<I’T<S<I>.7§SA1</52|. The
our result restrictsf to lie in H, which in fact is a null set first statement follows by Hadamard’s inequality (which states
under the GP prior [11]. If| - || x is formally defined over thatlog|M| < log|diag M | for positive semi-definiteV).
all functions in Lo (X) (with ||f||x = oo for f ¢ H), then Consider the eigenexpansion &f (4) with respect tou.

Ef[||f||x] = oo for GP sample paths. We haveE[n‘1<1>T§S<I>.ég] = I by the orthonormality of the



INFORMATION CONSISTENCY OF NONPARAMETRIC GAUSSIAN PROCESS METHODS 5

eigenfunctions. Using (5) and the concavity 4f— log|I + V. APPLICATIONS TOCONSISTENCY AND CONVERGENCE
A|, we have RATES

In this section, we apply the spectral techniques introduced
in Section 1l in order to bound the expected regret term
E[R] for several practically important settinds, p, thereby
obtaining information consistency rates via our main result.

Eflog|T + K] = Jim E [log|T+ cASS@TSSq»SSH
< Slim log |I + cnA<sE {”71‘1’T§SQ’<,§SH

= Z log (1 + cAsn)
520 A. Finite-Dimensional Covariance Functions
© If K(z,z') =Tz, z,x' € R, we obtain the parametric

by Jensen’s inequality. In the first equality, we usknear model:f(z) = w'z, w ~ N(0,I) a priori. The
Lebesgue’s monotone convergence theorem, noting|that RKHS H is {z — wTz}. Let X = (z;...z,)T € R™,
cA<s®’_3®. <5| > 1is nondecreasing if. This completes then R = log|T + ¢X" X|. It is shown in [13] that if
the proof. ||lz] <1 forall «, thenR < dlog(1+ cn/d). If the covariate

This result allows us to bouni[R], given that we know distributiony has bounded support, we hau@?] = O(log n),
the asymptotic behaviour ok, as s — oo. However, the therefore Bayesian prediction with the parametric linear model
eigenvalues of the Mercer expansion/ofw.r.t.  are known is information consistent with rat®(n~'logn). Note that
explicitly only for a few special cases. Widom [5] gives dhere is a linear dependence on the covariate dimensionality
powerful theorem which characterizés (s — oo) in a useful d. A more general result, covering other parametric models,
way, under some conditions di and . In the sequeld ~ B is given in [15].
means thatA/B — 1 in the limit which is given by the
context. B. Gaussian Kernel, Gaussian Covariates

A kernel K is calledstationaryif K(x,z') = K(x — '),
andisotropic if K(x,z') = K(||x — 2’||). For example, the
Gaussian kernel (7) is isotropic. Bochner’s theorem [8] asserts K(r) = exp (_br2) , =l — 2| (7)
that the class of stationary covariance functions vit{0) = 1 _ ) J ) )
(also called stationary correlation functions) is identical to tH8" INPut pointsz € R%. b > 0 is a scale parameter, in that
class of characteristic functions of probability distributiond '/* is the typical length scale i The Gaussian kernel
K(r) = Elexp(iw”r)], wherew € R? is a random variable. 1S frequentlly used in Machlne. Learnmg for' tasks where _
If the distribution ofw has a density, this is called tispectral ©@n be quite large. For small input dimensions common in

densit} \(w) of K (). For isotropic covariance functions geostatistical applications, the Gaussian kernel is not suitable,
we haveK(r) = K(r), r = |r|, and therefore\(w) = because it enforces an unreasonably high degree of smoothness

A1), 1= |lw]. [8]. If we choose the covariate distribution t_o be Gaussian,
Widom's theorem applies to isotropic covariance functiorf@@Mely(z) = N(x|0, (4a)~"I), the kernel eigenvalues are
with a spectral density\(1;) which does not decay too fastknoWn [16], and by using Lemma 1 we obtain a tight bound

asy — oo. Moreover, du needs to have a density(z) ©NELE]:

w.r.t. dz which is bounded and has bounded supbofhe E [log [T+ cK|] = O ((logn)*+!) .

theorem and its requirements are detailed in Appendix IlI. It

is interesting to note that the Gaussian kernel (7) dmefulfil Here, the leading constant {&g(1 + 2a/b)]~%, which de-

Widom’s requirements, since the tails of its spectral densigjeases inu/b, being the squared ratio of the length scale of

decay exponentially fast. We have the following theorem. the kernel and the standard deviation;0fThis makes sense:
Theorem 2:Let K (r) be an isotropic covariance function inif a/b is small, typical functions (with RKHS norm ad(1))

R? with strictly decreasing spectral densityy), fulfilling the ~ change on average rapidly and significantly within the typical

requirements for Widom’s theorem (Appendix IIl). Supposgange of .. In other words, the penalization of such rapid

that the covariate distributiop has bounded support and avariations is weaker under the RKHS norm, and therefore the

bounded density, in that(z) < D, andu(z) = 0 for ||| > €Xpected regret term has to be largera /b is large, typical

The Gaussian (or Radial Basis Function) kernel is

T. Then, functions do not change much in the typical range:pivhich
0 justifies a small expected regret term.
A < D(27)%A <2F(d/2+ 1) Sl/d> (1+0(1)) A proof is provided in Appendix II. The result matches
T our intuition in that the regularization imposed by the RKHS

norm becomes weaker with a higher input dimensionality (the
RKHS for dimensiond is actually the tensor product af
copies of the RKHS for dimension). To conclude, even
though the RKHSH for this kernel is a space dense in the
continuous functions, the expected regret is very small. This
2We have thatk(w) = (27)~4 [ exp(—icwTr) K () dr- can be explained by the strong smoothness constraint enforced

31t is conjectured in [5] that this requirement may not be necessary, but M@.” e Which grows quickly with irregularities iry. Wit.h
proof given there uses the bounded suppor.of a view on Section | and Theorem 1, we see that Bayesian GP

asymptotically as — oo.

A proof is given in Appendix Ill. In the sequel, we apply
this result in order to boun8[R] for a class of kernels which
is frequently used in practice.
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prediction with the Gaussian kernel is information consisteBt. Matérn Kernels. General Covariates

@n any o_limensiond, and for alla,b > 0, and we have an | ot K pe the Makrn kernel with spectral density= f,.,,
information rate bound of and suppose thai(x) is bounded, but does not necessarily
1 ) . . have bounded support. In this case, Theorem 2 is not useful.
2 £l + O (n(logn)**). On the other hand, Widom'’s theorem we used so far has been
proven only foru of bounded support, so that it cannot be
used directly in order to obtain a bound BfiR]. We can still
C. Matrn Kernels, Bounded Support Covariates obtain some insight into the pait, i through the following

. : . : . _theorem.
Recall that isotropic correlation functions are characteristic

functions of probability distributions. An important class og Theorem 3:Let K(r) be from the Mam class, with
. . . . - ) L tral d it = far(n). S that th iat
isotropic kernels is obtained this way from Studemlistribu- pectral density\(i) = fa.,(n). Suppose that the covariate

. L . : distribution 1, has a bounded density, such that
tions, it is referred to aMatérn class (see [8] for details; we stribution p ! . su
use [7], Sect. 4.2.1 here): /I{”mHST}Iu(w)d/(Zu+d) dx < C.

2171/ ~
—(r/a)’K,(r/a), «>0,v>0 (8) where C is a constant independent af > 0. Define
I'(v) i i
the bounded support measure- with density pur(x) =
where K, is a modified Bessel function. The spectral density ||z |<7}#(x), and let {\{")} be the spectrum of< w.r.t.
is ur. Then, for allT” > 0 large enough and for all > 0, there
exists asg such that

K(r) =

(v +d/2)
72T (v)

—v—d/2

AM) = fan(n) = o (1+ (an)?)

©) AT < O(1 + 6)s @rtd/d g > g,
Here,C is a constant independent 8f, 6.
A proof is given in Appendix IV. While the term—(2v+d)/d
is the same as obtained from Theorem 2, the present theorem
fs stronger (under an additional assumptionignin that the

which is the multivariateé-density inR¢ with 2+d degrees of
freedom and scale matrix—21. While « is a scale parameter,
the parameter directly controls the smoothness of sampl

path_s of the process: _they atdimes differentiable for some leading constant does not grow with However,s, (defining
version of the process iff< v. Forv = 1/2, K(r) x e/ s 4o speed of convergence) may dependl9rso the theorem
the Ornstein-Uhlenbeck kernel, corresponding GPs are Marka)g s not imply any strong statement on the asymptotics, of
processes, and thereforlezvery irregular. On the other handS me examples for admissable in Theorem 3 are given in
v — co anda = [(2v) /2 for fixed [, then K(r) becomes _Appendix IV: any Gaussian, or any Studentith smoothness
the Gaussian kernel /1", whose sample paths are analyliarametens, > v (tails of 4 lighter than tails ofA). On the
functions. _ N other hand, ifs < v, u is not admissable.

It is easy to see thah = f,,, fulfils the conditions of  \ye can use Theorem 3 in order to obtain a bounden|R]
Widom's theorem. For largg, A() ~ A77__(2V+d)' and from 4 the same form as (10). While the leading constant in this
Theorem 2 we obtain\, = O(s,_(2”+d)/d) if i has bounded gypression does not depend @h the speed of convergence
support and density. We show in Appendix IV that this |mpI|e§]ay do so, and at present we cannot infer a resulfglR)
that (if supp p is unbounded). In the same sense, the information

E[R] =0 (nd/<2u+d) (log n)2u/(2u+d>) ) (10) rate bound of (11) holds true for any single> 0. Note that

for large enoughl’, ur can be renormalized as probability
Note that the regret term is much larger than for the Gau¥easure, with negligible effect on the constants. Obtaining a
sian kernel. It decays the faster, the larger the smoothnéate bound for Ma&rn K andy of unbounded support remains
parametens becomes, or the smaller the dimensiémf the an important point for future work.
input space. Recalling Section | and Theorem 1, we see that
Bayesian GP prediction with the Man class is information V. CONCLUSION
consistent in any dimensiahand for anyv > 0, and we have

! ' We stated a regret bound for cumulative log loss of Bayesian
an information rate bound of

GP prediction, compared to experts from the RKHS of the
1 ) o0 )(2utd) 20/ (2v4d) prior covariance function, and we gave a fairly elementary
2 1fllkc + 0 (n (logn) ) - (1) proof. We argued how this result can be used to obtain tight
information consistency results and rate bounds, namely by
Note that the leading constant in the bound ofR] just bounding the expected regret tefifiog |I + cK ||, where K

derived depends on the siZé of the support ofu. In fact, is the covariance matrix for the covariates,,. We gave a
the dependence is as large &8"*%. If x has unbounded number of examples for classes of covariance functions of
support, we could try to obtain insight into the setldp » by central importance in practice, bounding the expected regret
definingur(x) = p(x)ljz <7y, then studying the behaviourby way of the covariance operator eigenvalues, which are
of E,.[R]. The result obtained above is not useful in thdtnown in some cases or can be obtained asymptotically in
respect. others. Our results depend strongly on parameters of the
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covariance function and the covariate distribution, and theyWe now prove our main result. Le¥, be the span of
provide a novel insight into regularization characteristics diK (-, x;)}. Fix f(-) = >, &, K(-,x;) € H,. We start with
these parameters. the following inequality:

Many results about consistency of nonparametric Bayes P,, <E, [—log P wN] +D P,.
predictors are known [1], [4], [15], [17], [18]. A strong 8 Fhe(<n) < Q[ 8Pyl ())] (@11 Pos]

notion of consistency is that the posterior has to concentrate = ZEQ [log P(ys|u(x;))] + DIQ || Pos]
on arbitrarily small environments (w.r.t. some metric) of the )
data-generating functiorf. Barron et.al. [1], [4] give such (12)

consistency results for general nonparametric methods, Qiffare Q. Py, are distributions over the function(-). This

they show that apart from a simple local condition on th@eqyality is an instance of the following Fenchel-Legendre
prior, namely that Kullback-Leibler environments of the truﬁualiw relationship [21], [22]:

f have to be given positive prior mass, additional non-intuitive
global conditions are necessary for posterior consistency. The Eqlg(v)] <logEp [ey(v)} +DIQ| P]

Wr(]ao?lrer Qo\f\ll?]nt oLlryorr:?atLonrcon;:ster}ﬁy Isntlrse? tm tLli],v[vls%here P, ) are distributions ovew. The inequality is an
andis sho 0 have nicer properties. in contrast to this wo uality for dQ o e9dP. In our case,P is the zero mean

our results here are specific to Bayesian Gaussian proce%; prior Py,, and Q is a GP constructed as follows. Let

prediction, although part of our argument holds for generab (to be specified below), and le@ be the posterior

Bayesian conditional prediction. This has the advantage tl??qtam a GP model with priof?,. and Gaussian likelihood term
our results depend strongly on parameters of the model, s ' N(iilu(z:), 72), whereg = (K + 72T)a. We have

as the prior covariance function or the assumed covari
distribution, which have a clear meaning for ractitionersQ[y(')] = f(). Letu = (u(z,));.
' 9 P Since dQ(u(-)) o< N(ul|g,7>I)dPys(u(-)), we have thdt

working with these models. Since our results give a nongQ(u(')) | Py (u(-))] = D[Q(w) | Pos(w)], and if B = I +

interpretation of these parameters in terms of regularlzaucT) 2K . then

properties, they may serve as guidelines for prior choice.
We obtained information convergence rate bounds in a fairly D[Q [ Pos] = D[Q(w) || Pos(u)]

direct manner, and these depend strongly on the specifics = (1/2) (log | B| +trB™! -n+a’Ka).
fof the model. Iq contr?st, ra_tes are very dgflcult to obtzaugy expanding — log P(ylu(z)) to second order around
or stronger notions of consistency [19]. Zhang [18], [ %Q[u(wi)] = f(z:), we have Eg[—log P(yi|u(z:))] <

obtains convergence results and rates using the same oV, p(y.| f(x:)) + (c/2)Varg|u(w;)], so that
duality relationship we do here. His results hold for general c
nonparametric methods, and not surprisingly he requiresEa [—log P(y<,|u(-))] < —log P(y<,|f(-)+ tr Varg[u].
global condition on the prior as well. His rate bounds and 1 o] 1 -
global condition depend on upper metric entropies, whidiere Varelu] = (K~ +77°I)~" = KB~ Combining
are very hard to work with in a concrete case such as odf§ Pounds gives X

here. Opper and Vivarelli [14] provide bounds &HR] for —log Pys(y<,) < —log P(y<,|f() + ian%(

the Gaussian kernel, their motivation is thatcontrols the 13)
learning curve of GP regression with Gaussian noise (see end _ 1 (ctr KB~ ' +1log|B|+trB~' — n)
of Section I1). 2

where we usech’ Ka = | f||% (2). Minimizing over 72

results inT? = ¢~ ! (using the spectral decomposition Af),

PROOAI\:P(:FE-II_\II-?IQZIREM 1 and plugging this into (13) proves the theorem in the restricted
case
In this section, we provide a proof for.Theforem 1. We begin inf —log P(y<,|f(-) + leH%(-
with the representer theorem [11], which is proved here for EHn 2
completeness. Since the first term depends ofionly through thef(x;),
Lemma 2 (Representer Theorenhet H be the RKHS for Lemma 2 allows us to take the infimum over all’&finstead.
kernel K, and let p(z<,, f) be a functional ofz<,, = This completes the proof of the inequality.
{z1,...,x,} and f € H. Let H,, be the span of K (-, x;)}. Now, suppose thaP(y|f(x)) = N(y|f(x),c?). There are
If p(x<n, f) = p(x<n, (f(x:)):), then: two bounding steps in the proof: the convex duality argument
._ - ) _ ) of (12), and the quadratic expansion-efog P(y|f(x)). The
flél?fiﬂ(afgmf) + 1 fll% = Sinf p(@<n, f) + || fll%- latter is an equality in this case. We noted above that the

Proof Since H,, C H, one direction is trivial. For the convex duality step is an equality fef) «x e?dP, where
other one, letf € 7, and letf be the orthogonal projectiong = log P(y<,|f). This @ is constructed as above & =
of f onto M, W.rt || - [|x. Now, f(z;) = f(x:) + (f — (K+02I)*1y§n, so that equality holds for the corresponding
f.K(-,x;))x = f(zx;), becausef — f is orthogonal toH,,. f=>,;aK(-,x;).
Here, we used the reproducing property &f Therefore, , , _ _
The relative entropy is defined aB[Q || P] = Egllog(dQ/dP)],

p(x<n, ) = P(wé_naf)’ and || fl|x < ||fllx, which proves ;5 qp the Radon-Nikodym derivative, i) < P, and co otherwise
the reverse direction. (Theo. 1.31 in [23]). In our caselQ/dP depends om only.
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APPENDIXII Here, we first uséog(l + x) < z, then bound the series by
REGRET FORGAUSSIAN KERNEL an integral and make use bt/d > (logn)/a.

In this section, we bound the expected regiR] for Ctd
the Gaussian kerndk and Gaussian covariate distributign I'(d, ) = / et dt
(see Section IV-B). We haveéX (r) = exp(—br?), u(z) = g
N(x|0, (4a)~1I). In this case, the eigenexpansionfoéfw.r.t. is the incomplete Gamma function (tail version). We use the
u (4) is known explicitly ford = 1 [16]: substitutiont = az'/¢ and the fact thats — T'(d,3) is
nonincreasing. Sinc&(d, ) = (d — 1)le=# Y 9—1 g% /k! for
AzﬁBl, o= VT 3ah A—atb4g B:% d € N (Eq. 8.352.2 in [24]), we have
-1 &
We first need to obtain a bound on the eigenvalues in the gen- g, < & (1 +da? Z (%'”)> = 0 ((logn)™1)
eral case ofl > 1. We use the fact thak' (x) = H?Zl K(z;) per S

. d A L.
a_nd wz) = sz_l pla;). Therefore, it is clea_r that the o the expected regret for the Gaussian kernel is
eigenvalues of in R? are d-products of the elgenvalueso((logn)d+1)_ The leading constant is? ~ [log(l +

for the scalark, thus (2a/A)*/*B' appears with multiplicity 2a/b)]~¢. While the leading term does not depend®ithere

- . (ltd-1 :
N = N(l,d) = (7;%"). N is the number of ordered sets,g term((logn)/a)?(log ¢), clarifying the dependence an

(n1,...,nq), n; > 0 with °.n;, = [. This can be seen by

noting thatN (1,2) =1+ 1 and N(l,d + 1) = >\, N(i,d).

We need the boundV(l,d) <14 — (I—1)¢ ford > 2,1 > 2. APPENDIX I

The proof is elementary, using the semantics\df, d). Now, WIDOM’S THEOREM

consider the sequence of eigenvaluesfor d dimensions, ) ) _

consisting of the values; = (2a/A)¥/2B! with multiplicity In this section, we state a theorem of Widom [5] and show

N(l,d). SinceN(1,d) = d > 1, we alter the sequence, by how Theqrem 2 is derived from this result. More details can
removingd — 1 of the replicas of;. For this altered sequence € found in [25].
we have that Let K (r) be an isotropic covariance function with spectral
density A\(w), i.e.
As < (2a/4)72B5" s > 0.
o | | Aw) = (27r)—d/K(r)e—w” dar.
To see this, split the range> 0 into blocks of sizeN (I, d)
corresponding to the value af. Now, for s = (I — 1)% +
1,...,1¢ we have that; < (2a/A)%/2B%"", becauseB < 1.
Furthermore, we hav&V(l,d) < 14 — (I —1)4. We effectively

replace thev; block o_f §ize N(l_, d) _by a block with more any o(n) — oo, o(n)/n — 0. These are fulfilled for common
elements, whose prefix is a pointwise upper bound. spectral densities k(7)) does not decay faster thanly(1/7).

The modification of the\, sequence leads to an additional;oreqgver, the distribution: has to have a bounded density
O(logn) term in the final result, which is subdominant an () and bounded support. Let

will not be mentioned in the sequel. Lét= c(2a/A)%/2.
Using Lemma 1, we have that

Note thatA\(w) = A(n), n = ||w]||. Widom requires that
A(n) > 0, and that its tails do not decay too fast. First, as
1 — 00 A(n+o(n)) ~ A(n). Second:A(n) = o(A(o(n))) for

Y(e) = (27T)_d/I{/_L(m))\(w)>(27r)*d€} dxdw
B[R] <Y log(1+cnh,) < log(1+enB"). (14
] < ; B(l+ )= ;O g( " ) ok ands = s(¢) = min{s’' | Ay > ¢}. Widom’s theorem states
- B that(e) ~ s(e) ase — 0. Note that ify is strictly decreasing,

B is strictly decreasing ifa/b, with B — 1 asa/b — 0. Let and if vy ~!(s + o(s)) ~ 1 ~(s), then this implies thah, ~
a = —log B > 0. We split the right hand side of (14) intoy=1(s).
two partsS + Sz. For ko = [((logn)/a)?], we have We now prove Theorem 2. The support;ofs contained in
the ball{z | || < T}, whose volume i/ = 7%/?T'(d/2 +
1)~174. Furthermoreyu(z) < D. We can upper boung(s)
by replacingu by py () = DIz <1y > p(x). We have

ko—1
Sy = Z log (1 + Eanl/d) < a~%(logn)?log(1 + én)
k=0
=0 ((logn)*™).
P(e) < (27)_dVT/I{A(w)z(zw)—dp—le} dw
Next, nB*’* < 1, so that

o= 3 log (1+enB"") <an > B < (14
k>ko k>ko wherey = (27)~¢D~1. Here, ¢ is taken small enough, so

o 1/d _ —d that \~!(ve) exists. We equate the right hand side witand
n/k_o eXp( ar ) dm) s¢ (1 + do™%nl" (d, log n)) " solve fore, noting thatA=! is strictly decreasing.

= (2”)_dVT/I{Hw\mfl(ws)}dw = 2m) " VrVao o)
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APPENDIX IV
THE MATERN CLASS

In this section, we bounH[R] for the Maérn class (8) with
parametersy, v. More details are given in [25]. Recall that
there existsA, 3, such that\, < As~@+d/d for all s > 3.
We use Lemma 1 and split the sum owelinto two parts
S; + Sy, whereS; runs up tosy = n%/(?*+9)(logn)7, andr
is chosen below. Since, grows withn, we can assume that
S0 > Sg- Then,

Next, let u(z) = fa,..,(|lz|]) be a Student-density. Let
g2 = Vo +d/2, 0 = q2/q. The same maths as above gives

T
/I{nmug}u(w)(“l)/q dx ‘X/ 2@t 1yed;
1

with 7 = 1 + (apT)2. We employ the binomial theorem to
write (z — 1)® as polynomial inz of degreeua. If v5 > v, then
o > 1, so all termsz* in the integrand have < —1, and
the final value can be bounded independent{/off v, = v,

so—! the integrand features™!, giving a termlog T'. If v, < v, the
d/(2v+d T ~ ! !
Si=) log(l+end) =0 (" /@D (logn) 1+ ) ; final value containg (++1)(1-2) We see tha is admissable
s=0

for v > v (lighter tails than)), but inadmissable for, < v.
since\, < K(0)/2. Furthermore,

ACKNOWLEDGMENT
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$2%0 5250 Manfred Opper, and Andrew Ng for many discussions. Sup-
r(evid)/d _vta)d ported in part by the IST Programme of the European Com-
=0 | (logn) > (s/50) munity, under the PASCAL Network of Excellence, IST-2002-
5>s0 506778.
We lower-bounds/sg by sq repetitions ofl, 2, ..., thus

So =0 (log n)—-r(2u+d)/d50 Z k,—(2u+d)/d
k>1

-0 (nd/(2u+d)(log n)r(17(2u+d)/d)>

because the series converges#or 0 (it is a zeta function).
Choosingr = —d/(2v + d), we have

E[R] = O (nd/(2”+d) (log n)g”/(2”+d)) .

Note that the leading constant is an affine functiondofthe
leading constant in the eigenvalue asymptotics.

Next, we prove Theorem 3. Recall Appendix Ill, we use
Yr(e) for the clipped measurgr. Let g = v +d/2, y =
1+ (an)?. Transforming to polar coordinates, themjogives

Yr(e) ox / / Liyocpu(a)(y —1)* dy dx
lz||I<T J1

wherep = (c12)71, ¢; a constant, and = (d — 2)/2 > —1.
Integrating outy gives

Yr(e) ~ Cm(““)/q/I{Hw||3T}/~L(w)(““)/q dw

(1]

(2]

(3]
(4]

(5]
(6]
(7]
(8]
(9]
(20]
(11]

where(} is a constant. The latter integral is bounded®y (]
S0 hr(e) ~ Coe=@/Cr+d) ¢y = C1Cc; YT if ¢ =
052”+d)/d, our statement follows from Widom's theorem.
Finally, we give some examples farfulfilling the assump-
tions of Theorem 3. Ifu(x) = N(u,X) is a multivariate

Gaussian, then

/I{umng}u(w)(““)/q dx

(23]

(14]

(15]

2+ d\"? [16]
v/(2v+d
= [2em /@t (d) EN(u,2vta)/am) Lz <]

where the latter expectation is bounded above by one, giviﬁg]
a bound independent @f, which is tight asl” — oo.
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