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Abstract

We present a competitive analysis of Bayesian learning algorithms in the
online learning setting and show that many simple Bayesian algorithms
(such as Gaussian linear regression and Bayesian logistic regression) per-
form favorably when compared, in retrospect, to the single best model in
the model class. The analysis does not assume that the Bayesian algo-
rithms’ modeling assumptions are “correct,” and our bounds hold even
if the data is adversarially chosen. For Gaussian linear regression (us-
ing logloss), our error bounds are comparable to the best bounds in the
online learning literature, and we also provide a lower bound showing
that Gaussian linear regression is optimal in a certain worst case sense.
We also give bounds for some widely used maximum a posteriori (MAP)
estimation algorithms, including regularized logistic regression.

1 Introduction

The last decade has seen significant progress in online learning algorithms that perform well
even in adversarial settings (e.g. the “expert” algorithms of Cesa-Bianchi et al. (1997)). In
the online learning framework, one makes minimal assumptions on the data presented to
the learner, and the goal is to obtain good (relative) performance on arbitrary sequences. In
statistics, this philosophy has been espoused by Dawid (1984) in the prequential approach.

We study the performance of Bayesian algorithms in this adversarial setting, in which the
process generating the data is not restricted to come from the prior—data sequences may
be arbitrary. Our motivation is similar to that given in the online learning literature and the
MDL literature (see Grunwald, 2005) —namely, that models are often chosen to balance
realism with computational tractability, and often assumptions made by the Bayesian are
not truly believed to hold (e.g. i.i.d. assumptions). Our goal is to study the performance of
Bayesian algorithms in the worst-case, where all modeling assumptions may be violated.

We consider the widely used class of generalized linear models—focusing on Gaussian
linear regression and logistic regression—and provide relative performance bounds (com-
paring to the best model in our model class) when the cost function is the logloss. Though
the regression problem has been studied in a competitive framework and, indeed, many
ingenious algorithms have been devised for it (e.g., Foster, 1991; Vovk, 2001; Azoury and
Warmuth, 2001) , our goal here is to study how the more widely used, and often simpler,
Bayesian algorithms fare. Our bounds for linear regression are comparable to the best
bounds in the literature (though we use the logloss as opposed to the square loss).

The competitive approach to regression started with Foster (1991), who provided com-
petitive bounds for a variant of the ridge regression algorithm (under the square loss).
Vovk (2001) presents many competitive algorithms and provides bounds for linear regres-
sion (under the square loss) with an algorithm that differs slightly from the Bayesian one.
Azoury and Warmuth (2001) rederive Vovk’s bound with a different analysis based on
Bregman distances. Our work differs from these in that we consider Bayesian Gaussian



linear regression, while previous work typically used more complex, cleverly devised al-
gorithms which are either variants of a MAP procedure (as in Vovk, 2001) , or that involve
other steps such as “clipping” predictions (as in Azoury and Warmuth, 2001) . These dis-
tinctions are discussed in more detail in Section 3.1.

We should also note that when the loss function is the logloss, multiplicative weights algo-
rithms are sometimes identical to Bayes rule with particular choices of the parameters (see
Freund and Schapire, 1999) . Furthermore, Bayesian algorithms have been used in some
online learning settings, such as the sleeping experts setting of Freund et al. (1997) and the
online boolean prediction setting of Cesa-Bianchi et al. (1998). Ng and Jordan (2001) also
analyzed an online Bayesian algorithm but assumed that the data generation process was
not too different from the model prior. To our knowledge, there have been no studies of
Bayesian generalized linear models in an adversarial online learning setting (though many
variants have been considered as discussed above).

We also examine maximum a posteriori (MAP) algorithms for both Gaussian linear regres-
sion (i.e., ridge regression) and for (regularized) logistic regression. These algorithms are
often used in practice, particularly in logistic regression where Bayesian model averag-
ing is computationally expensive, but the MAP algorithm requires only solving a convex
problem. As expected, MAP algorithms are somewhat less competitive than full Bayesian
model averaging, though not unreasonably so.

2 Bayesian Model Averaging

We now consider the Bayesian model averaging (BMA) algorithm and give a bound on its
worst-case online loss. We start with some preliminaries. Letx ∈ Rn denote the inputs of
a learning problem andy ∈ R the outputs. Consider a model from the generalized linear
model family (see McCullagh and Nelder, 1989) , that can be writtenp(y|x, θ) = p(y|θTx),
whereθ ∈ Rn are the parameters of our model (θT denotes the transpose ofθ). Note that
the predicted distribution ofy depends only onθTx, which is linear inθ. For example, in
the case of Gaussian linear regression, we have

p(y|x, θ) =
1√

2πσ2
exp

(
−(θTx− y)2

2σ2

)
, (1)

whereσ2 is a fixed,knownconstant that is not a parameter of our model. In logistic
regression, we would have

log p(y|x, θ) = y log
1

1 + exp(−θTx)
+ (1− y) log

(
1− 1

1 + exp(−θTx)

)
, (2)

where we assumey ∈ {0, 1}.
LetS = {(x(1), y(1)), (x(2), y(2)), . . . , (x(T ), y(T ))} be an arbitrary sequence of examples,
possibly chosen by an adversary. We also useSt to denote the subsequence consisting of
only the firstt examples. We assume throughout this paper that||x(t)|| ≤ 1 (where|| · ||
denotes theL2 norm).

Assume that we are going to use a Bayesian algorithm to make our online predictions.
Specifically, assume that we have a Gaussian prior on the parameters:

p(θ) = N (θ;~0, ν2In),
whereIn is then-by-n identity matrix,N (·;µ,Σ) is the Gaussian density with meanµ and
covarianceΣ, andν2 > 0 is some fixed constant governing the prior variance. Also, let

pt(θ) = p(θ|St) =

(∏t
i=1 p(y

(i)|x(i), θ)
)
p(θ)∫

θ

(∏t
i=1 p(y(i)|x(i), θ)

)
p(θ)dθ

be the posterior distribution overθ given the firstt training examples. We have thatp0(θ) =
p(θ) is just the prior distribution.



On iterationt, we are given the inputx(t), and our algorithm makes a prediction using the
posterior distribution over the outputs:

p(y|x(t), St−1) =
∫
θ

p(y|x(t), θ)p(θ|St−1)dθ.

We are then given the true labely(t), and we suffer logloss− log p(y(t)|x(t), St−1). We
define the cumulative loss of the BMA algorithm afterT rounds to be

LBMA(S) =
T∑
t=1

− log p(y(t)|x(t), St−1).

Importantly, note that even though the algorithm we consider is a Bayesian one, our theo-
retical results donot assume that the data comes from any particular probabilistic model.
In particular, the data may be chosen by an adversary.

We are interested in comparing against the loss of any “expert” that uses some fixed pa-
rametersθ ∈ Rn. Define`θ(t) = − log p(y(t)|x(t), θ), and let

Lθ(S) =
T∑
t=1

`θ(t) =
T∑
t=1

− log p(y(t)|x(t), θ).

Sometimes, we also wish to compare against distributions over experts. Given a distribution
Q overθ, define`Q(t) =

∫
θ
−Q(θ) log p(y(t)|x(t), θ)dθ, and

LQ(S) =
T∑
t=1

`Q(t) =
∫
θ

Q(θ)Lθ(S)dθ.

This is the expected logloss incurred by a procedure that first samples someθ ∼ Q and
then uses thisθ for all its predictions. Here, the expectation is over the randomθ, not over
the sequence of examples. Note that the expectation is of the logloss, which is a different
type of averaging than in BMA, which had the expectation and the log in the reverse order.

2.1 A Useful Variational Bound

The following lemma provides a worst case bound of the loss incurred by Bayesian algo-
rithms and will be useful for deriving our main result in the next section. A result very
similar to this (for finite model classes) is given by Freund et al. (1997). For completeness,
we prove the result here in its full generality, though our proof is similar to theirs. As usual,
defineKL(q||p) =

∫
θ
q(θ) log q(θ)

p(θ) .

Lemma 2.1: LetQ be any distribution overθ. Then for all sequencesS
LBMA(S) ≤ LQ(S) + KL(Q||p0).

Proof: LetY = {y(1), . . . , y(T )} andX = {x(1), . . . , x(T )}. The chain rule of conditional
probabilities implies thatLBMA(S) = − log p(Y |X) andLθ(S) = − log p(Y |X, θ). So

LBMA(S)− LQ(S) = − log p(Y |X) +
∫
θ

Q(θ) log p(Y |X, θ)dθ

=
∫
θ

Q(θ) log
p(Y |X, θ)
p(Y |X)

dθ

By Bayes rule, we have thatpT (θ) = p(Y |X,θ)p0(θ)
p(Y |X) . Continuing,

=
∫
θ

Q(θ) log
pT (θ)
p0(θ)

dθ

=
∫
θ

Q(θ) log
Q(θ)
p0(θ)

dθ −
∫
θ

Q(θ) log
Q(θ)
pT (θ)

dθ

= KL(Q||p0)−KL(Q||pT ).
Together with the fact thatKL(Q||pT ) ≥ 0, this proves the lemma. �



2.2 An Upper Bound for Generalized Linear Models

For the theorem that we shortly present, we need one new definition. Letfy(z) =
− log p(y|θTx = z). Thus,fy(t)(θTx(t)) = `θ(t). Note that for linear regression (as
defined in Equation 1), we have that for ally

|f ′′y (z)| = 1
σ2

(3)

and for logistic regression (as defined in Equation 2), we have that fory ∈ {0, 1}
|f ′′y (z)| ≤ 1 .

Theorem 2.2: Supposefy(z) is continuously differentiable. LetS be a sequence such that
||x(t)|| ≤ 1 and such that for some constantc, |f ′′

y(t)(z)| ≤ c (for all z). Then for allθ∗,

LBMA(S) ≤ Lθ∗(S) +
1

2ν2
||θ∗||2 +

n

2
log
(

1 +
Tcν2

n

)
(4)

The ||θ∗||2/2ν2 term can be interpreted as a penalty term from our prior. Thelog term is
how fast our loss could grow in comparison to the bestθ∗. Importantly, this extra loss is
only logarithmic inT in this adversarial setting.

This bound almost identical to those provided by Vovk (2001); Azoury and Warmuth (2001)
and Foster (1991) for the linear regression case (under the square loss); the only difference
is that in their bounds, the last term is multiplied by an upper bound ony(t). In contrast,
we require no bound ony(t) in the Gaussian linear regression case due to the fact that we
deal with the logloss (also recall|f ′′y (z)| = 1

σ2 for all y).

Proof: We use Lemma 2.1 withQ(θ) = N (θ; θ∗, ε2In) being a normal distribution with
meanθ∗ and covarianceε2In. Here,ε2 is a variational parameter that we later tune to get
the tightest possible bound. LettingH(Q) = n

2 log 2πeε2 be the entropy ofQ, we have

KL(Q||p0) =
∫
θ

Q(θ) log
[

1
(2π)n/2|ν2In|1/2

exp
(
− 1

2ν2
θT θ

)]−1

dθ −H(Q)

= n log ν +
1

2ν2

∫
θ

Q(θ)θT θdθ − n

2
− n log ε

= n log ν +
1

2ν2

(
||θ∗||2 + nε2

)
− n

2
− n log ε. (5)

To prove the result, we also need to relate the error ofLQ to that ofLθ∗ . By taking a Taylor
expansion offy (assumey ∈ S), we have that

fy(z) = fy(z∗) + f ′y(z∗)(z − z∗) + f ′′y (ξ(z))
(z − z∗)2

2
,

for some appropriate functionξ. Thus, ifz is a random variable with meanz∗, we have

Ez[fy(z)] = fy(z∗) + f ′y(z∗) · 0 + Ez

[
f ′′y (ξ(z))

(z − z∗)2

2

]
≤ fy(z∗) + cEz

[
(z − z∗)2

2

]
= fy(z∗) +

c

2
Var(z)

Consider a single example(x, y). We can apply the argument above withz∗ = θ∗Tx, and
z = θTx, whereθ ∼ Q. Note thatE[z] = z∗ sinceQ has meanθ∗. Also, Var(θTx) =
xT (ε2In)x = ||x||2ε2 ≤ ε2 (because we previously assumed that||x|| ≤ 1). Thus, we have

Eθ∼Q[fy(θTx)] ≤ fy(θ∗Tx) +
cε2

2



Since`Q(t) = Eθ∼Q[fy(t)(θTx(t))] and`θ∗(t) = fy(t)(θ∗Tx(t)), we can sum both sides
from t = 1 to T to obtain

LQ(S) ≤ Lθ∗(S) +
Tc

2
ε2

Putting this together with Lemma 2.1 and Equation 5, we find that

LBMA(S) ≤ Lθ∗(S) +
Tc

2
ε2 + n log ν +

1
2ν2

(
||θ∗||2 + nε2

)
− n

2
− n log ε.

Finally, by choosingε2 = nν2

n+Tcν2 and simplifying, Theorem 2.2 follows. �

2.3 A Lower Bound for Gaussian Linear Regression

The following lower bound shows that, for linear regression, no other prediction scheme is
better than Bayes in the worst case (when our penalty term is||θ∗||2). Here, we compare to
anarbitrary predictive distributionq(y|x(t), St−1) for prediction at timet, which suffers an
instant loss̀ q(t) = − log q(y(t)|x(t), St−1). In the theorem,b·c denotes the floor function.

Theorem 2.3: LetLθ∗(S) be the loss under the Gaussian linear regression model using the
parameterθ∗, and letν2 = σ2 = 1. For any set of predictive distributionsq(y|x(t), St−1),
there exists anS with ||x(t)|| ≤ 1 such that

T∑
t=1

`q(t) ≥ inf
θ∗

(Lθ∗(S) +
1
2
||θ∗||2) +

n

2
log
(

1 +
⌊
T

n

⌋)

Proof: (sketch) Ifn = 1 and ifS is such thatx(t) = 1, one can show the equality:

LBMA(S) = inf
θ∗

(Lθ∗(S) +
1
2
||θ∗||2) +

1
2

log(1 + T )

Let Y = {y(1), . . . , y(T )} andX = {1, . . . , 1}. By the chain rule of conditional probabil-
ities,LBMA(S) = − log p(Y |X) (wherep is the Gaussian linear regression model), and
q’s loss is

∑T
t=1 `q(t) = − log q(Y |X). For any predictive distributionq that differs from

p, there must exist some sequenceS such that− log q(Y |X) is greater than− log p(Y |X)
(since probabilities are normalized). Such a sequence proves the result forn = 1.

The modification forn dimensions follows:S is broken intobT/nc subsequences where
in every subsequence only one dimension hasx

(t)
k = 1 (and the other dimensions are set to

0). The result follows due to the additivity of the losses on these subsequences. �

3 MAP Estimation

We now present bounds for MAP algorithms for both Gaussian linear regression (i.e., ridge
regression) and logistic regression. These algorithms use the maximumθ̂t−1 of pt−1(θ) to
form their predictive distributionp(y|x(t), θ̂t−1) at timet, as opposed to BMA’s predictive
distribution ofp(y|x(t), St−1). As expected these bounds are weaker than BMA, though
perhaps not unreasonably so.

3.1 The Square Loss and Ridge Regression

Before we provide the MAP bound, let us first present the form of the posteriors and the

predictions for Gaussian linear regression. DefineAt = 1
ν2 In + 1

σ2

∑t
i=1 x

(i)x(i)T , and
bt =

∑t
i=1 x

(i)y(i). We now have that

pt(θ) = p(θ|St) = N
(
θ; θ̂t, Σ̂t

)
, (6)

whereθ̂t = A−1
t bt, andΣ̂t = A−1

t . Also, the predictions at timet+ 1 are given by

p(y(t+1)|x(t+1), St) = N
(
y(t+1); ŷt+1, s

2
t+1

)
(7)



whereŷt+1 = θ̂Tt x
(t+1), s2

t+1 = x(t+1)T Σ̂tx(t+1) + σ2. In contrast, the prediction of a
fixed expert using parameterθ∗ would be

p(y(t)|x(t), θ∗) = N
(
y(t); y∗t , σ

2
)
, (8)

wherey∗t = θ∗Tx(t).

Now the BMA loss is:

LBMA(S) =
T∑
t=1

1
2s2
t

(y(t) − θ̂Tt−1x
(t))2 + log

√
2πs2

t (9)

Importantly, note how Bayes is adaptively weighting the squared term with the inverse
variances1/st (which depend on the current observationx(t)). The logloss of using a fixed
expertθ∗ is just:

Lθ∗(S) =
T∑
t=1

1
2σ2

(y(t) − θ∗Tx(t))2 + log
√

2πσ2 (10)

The MAP procedure (referred to as ridge regression) usesp(y|x(t), θ̂t−1) which has afixed
variance. Hence, the MAP loss is essentially the square loss and we define it as such:

L̃MAP(S) =
1
2

T∑
t=1

(y(t) − θ̂Tt−1x
(t))2 , L̃θ∗(S) =

1
2

T∑
t=1

(y(t) − θ∗Tx(t))2, (11)

whereθ̂t is the MAP estimate (see Equation 6).

Corollary 3.1: Letγ2 = σ2 + ν2. For all S such that||x(t)|| ≤ 1 and for allθ∗, we have

L̃MAP(S) ≤ γ2

σ2
L̃θ∗(S) +

γ2

2ν2
||θ∗||2 +

γ2n

2
log
(

1 +
Tν2

σ2n

)
Proof: Using Equations (9,10) and Theorem 2.2, we have

T∑
t=1

1
2s2
t

(y(t) − θ̂Tt−1x
(t))2 ≤

T∑
t=1

1
2σ2

(y(t) − θ∗Tx(t))2 +
1

2ν2
||θ∗||2

+
n

2
log
(

1 +
Tcν2

n

)
+

T∑
t=1

log

√
2πσ2√
2πs2

t

Equations (6, 7) imply thatσ2 ≤ s2
t ≤ σ2 + ν2. Using this, the result follows by noting

that the last term is negative and by multiplying both sides of the equation byσ2 + ν2. �

We might have hoped that MAP were more competitive in that the leading coefficient,
in front of the L̃θ∗(S) term in the bound, be1 (similar to Theorem 2.2) rather thanγ

2

σ2 .
Crudely, the reason that MAP is not as effective as BMA is that MAP does not take into
account theuncertaintyin its predictions—thus the squared terms cannot be reweighted to
take variance into account (compare Equations 9 and 11).

Some previous (non-Bayesian) algorithms did in fact have bounds with this coefficient
being unity. Vovk (2001) provides such an algorithm, though this algorithm differs from
MAP in that its predictions at timet are a nonlinear function ofx(t) (it usesAt instead
of At−1 at time t). Foster (1991) provides a bound with this coefficient being1 with
more restrictive assumptions. Azoury and Warmuth (2001) also provide a bound with a
coefficient of1 by using a MAP procedure with “clipping.” (Their algorithm thresholds the
predictionŷt = θ̂Tt−1x

(t) if it is larger than some upper bound. Note that we do not assume
any upper bound ony(t).)



As the following lower bound shows, it is not possible for the MAP linear regression algo-
rithm to have a coefficient of1 for L̃θ∗(S), with a reasonable regret bound. A similar lower
bound is in Vovk (2001), which doesn’t apply to our setting where we have the additional
constraint||x(t)|| ≤ 1.

Theorem 3.2: Letγ2 = σ2 + ν2. There exists a sequenceS with ||x(t)|| ≤ 1 such that

L̃MAP(S) ≥ inf
θ∗

(L̃θ∗(S) +
1
2
||θ∗||2) + Ω(T )

Proof: (sketch) LetS be a lengthT + 1 sequence, withn = 1, where for the firstT steps,
x(t) = 1/

√
T andy(t) = 1, and atT + 1, x(T+1) = 1 andy(T+1) = 0. Here, one can show

thatinfθ∗(L̃θ∗(S) + 1
2 ||θ
∗||2) = T/4 andL̃MAP(S) ≥ 3T/8, and the result follows. �

3.2 Logistic Regression

MAP estimation is often used for regularized logistic regression, since it requires only
solving a convex program (while BMA has to deal with a high dimensional integral over
θ that is intractable to compute exactly). Lettingθ̂t−1 be the maximum of the posterior
pt−1(θ), defineLMAP(S) =

∑T
t=1− log p(y(t)|x(t), θ̂t−1). As with the square loss case,

the bound we present is multiplicatively worse (by a factor of4).

Theorem 3.3: In the logistic regression model withν ≤ 0.5, we have that for all sequences
S such that||x(t)|| ≤ 1 andy(t) ∈ {0, 1} and for allθ∗

LMAP(S) ≤ 4Lθ∗(S) +
2
ν2
||θ∗||2 + 2n log

(
1 +

Tν2

n

)
Proof: (sketch) Assumen = 1 (the general case is analogous). The proof consists of
showing that̀ θ̂t−1

(t) = − log p(y(t)|x(t), θ̂t−1) ≤ 4`BMA(t). Without loss of generality,

assumey(t) = 1 andx(t) ≥ 0, and for convenience, we just writex instead ofx(t). Now
the BMA prediction is

∫
θ
p(1|θ, x)pt−1(θ)dθ, and`BMA(t) is the negative log of this. Note

θ =∞ gives probability1 for y(t) = 1 (and this setting ofθ minimizes the loss at timet).

Since we do not have a closed form solution of the posteriorpt−1, let us work with an-
other distributionq(θ) in lieu of pt−1(θ) that satisfies certain properties. Definepq =∫
θ
p(1|θ, x)q(θ)dθ, which can be viewed as the prediction usingq rather than the posterior.

We chooseq to be the rectification of the GaussianN (θ; θ̂t−1, ν
2In), such that there is

positive probability only forθ ≥ θ̂t−1 (and the distribution is renormalized). With this
choice, we first show that the loss ofq,− log pq, is less than or equal tòBMA(t). Then we
complete the proof by showing that`θ̂t−1

(t) ≤ −4 log pq, since− log pq ≤ `BMA(t).

Consider theq which maximizespq subject to the following constraints: letq(θ) have its
maximum atθ̂t−1; let q(θ) = 0 if θ < θ̂t−1 (intuitively, mass to the left of̂θt−1 is just
making thepq smaller); and impose the constraint that−(log q(θ))′′ ≥ 1/ν2. We now
argue that for such aq,− log pq ≤ `BMA(t). First note that due to the Gaussian priorp0, it
is straightforward to show that−(log pt−1)′′(θ) ≥ 1

ν2 (the prior imposes some minimum

curvature). Now if this posteriorpt−1 were rectified (with support only forθ ≥ θ̂t−1)
and renormalized, then such a modified distribution clearly satisfies the aforementioned
constraints, and it has loss less than the loss ofpt−1 itself (since the rectification only
increases the prediction). Hence, the maximizer,q, of pq subject to the constraints has loss
less than that ofpt−1, i.e.− log pq ≤ `BMA(t).
We now show that such a maximalq is the (renormalized) rectification of the Gaussian
N (θ; θ̂t−1, ν

2In), such that there is positive probability only forθ > θ̂t−1. Assume some
otherq2 satisfied these constraints and maximizedpq. It cannot be thatq2(θ̂t−1) < q(θ̂t−1),



else one can showq2 would not be normalized (since withq2(θ̂t−1) < q(θ̂t−1), the cur-
vature constraint imposes that thisq2 cannot crossq). It also cannot be thatq2(θ̂t−1) >
q(θ̂t−1). To see this, note that normalization and curvature imply thatq2 must crosspt only
once. Now a sufficiently slight perturbation of this crossing point to the left, by shifting
more mass from the left to the right side of the crossing point, would not violate the cur-
vature constraint and would result in a new distribution with largerpq, contradicting the
maximality ofq2. Hence, we have thatq2(θ̂t−1) = q(θ̂t−1). This, along with the curvature
constraint and normalization, imply that the rectified Gaussian,q, is the unique solution.

To complete the proof, we shoẁ̂θt−1
(t) = − log p(1|x, θ̂t−1) ≤ −4 log pq. We consider

two cases,̂θt−1 < 0 andθ̂t−1 ≥ 0. We start with the casêθt−1 < 0. Using the boundedness
of the derivative|∂ log p(1|x, θ)/∂θ| < 1 and thatq only has support forθ ≥ θ̂t−1, we have

pq =
∫
θ

exp(log p(1|x, θ))q(θ)dθ

≤
∫
θ

exp
(

log(p(1|x, θ̂t−1) + θ − θ̂t−1

)
q(θ)dθ ≤ 1.6p(1|x, θ̂t−1)

where we have used that
∫
θ

exp(θ− θ̂t−1)q(θ)dθ < 1.6 (which can be verified numerically

using the definition ofq with ν ≤ 0.5). Now observe that for̂θt−1 ≤ 0, we have the lower
bound− log p(1|x, θ̂t−1) ≥ log 2. Hence,− log pq ≥ − log p(1|x, θ̂t−1) − log 1.6 ≥
(− log p(1|x, θ̂t−1))(1− log 1.6/ log 2) ≥ 0.3`θ̂t−1

(t), which shows̀ θ̂t−1
(t) ≤ −4 log pq.

Now for the casêθt−1 ≥ 0. Let σ be the sigmoid function, sop(1|x, θ) = σ(θx) and
pq =

∫
θ
σ(xθ)q(θ)dθ. Since the sigmoid is concave forθ > 0 and, for this case,q only has

support from positiveθ, we have thatpq ≤ σ
(
x
∫
θ
θq(θ)dθ

)
. Using the definition ofq, we

then have thatpq ≤ σ(x(θ̂t−1 + ν)) ≤ σ(θ̂t−1 + ν), where the last inequality follows from
θ̂t−1 + ν > 0 andx ≤ 1. Using properties ofσ, one can show|(log σ)′(z)| < − log σ(z)
(for all z). Hence, for allθ ≥ θ̂t−1, |(log σ)′(θ)| < − log σ(θ) ≤ − log σ(θ̂t−1). Using
this derivative condition along with the previous bound onpq, we have that− log pq ≥
− log σ(θ̂t−1 + ν) ≥ (− log σ(θ̂t−1))(1 − ν) = `θ̂t−1

(t)(1 − ν), which shows that

`θ̂t−1
(t) ≤ −4 log pq (sinceν ≤ 0.5). This proves the claim when̂θt−1 ≥ 0. �
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