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Abstract

We present a competitive analysis of Bayesian learning algorithms in the
online learning setting and show that many simple Bayesian algorithms
(such as Gaussian linear regression and Bayesian logistic regression) per-
form favorably when compared, in retrospect, to the single best model in
the model class. The analysis does not assume that the Bayesian algo-
rithms’ modeling assumptions are “correct,” and our bounds hold even
if the data is adversarially chosen. For Gaussian linear regression (us-
ing logloss), our error bounds are comparable to the best bounds in the
online learning literature, and we also provide a lower bound showing
that Gaussian linear regression is optimal in a certain worst case sense.
We also give bounds for some widely used maximum a posteriori (MAP)
estimation algorithms, including regularized logistic regression.

1 Introduction

The last decade has seen significant progress in online learning algorithms that perform well
even in adversarial settings (e.g. the “expert” algorithms of Cesa-Bianchi et al. (1997)). In

the online learning framework, one makes minimal assumptions on the data presented to
the learner, and the goal is to obtain good (relative) performance on arbitrary sequences. In
statistics, this philosophy has been espoused by Dawid (1984) in the prequential approach.

We study the performance of Bayesian algorithms in this adversarial setting, in which the
process generating the data is not restricted to come from the prior—data sequences may
be arbitrary. Our motivation is similar to that given in the online learning literature and the
MDL literature (see Grunwald, 2005) —namely, that models are often chosen to balance
realism with computational tractability, and often assumptions made by the Bayesian are
not truly believed to hold (e.qg. i.i.d. assumptions). Our goal is to study the performance of
Bayesian algorithms in the worst-case, where all modeling assumptions may be violated.

We consider the widely used class of generalized linear models—focusing on Gaussian
linear regression and logistic regression—and provide relative performance bounds (com-
paring to the best model in our model class) when the cost function is the logloss. Though
the regression problem has been studied in a competitive framework and, indeed, many
ingenious algorithms have been devised for it (e.g., Foster, 1991; Vovk, 2001; Azoury and
Warmuth, 2001) , our goal here is to study how the more widely used, and often simpler,
Bayesian algorithms fare. Our bounds for linear regression are comparable to the best
bounds in the literature (though we use the logloss as opposed to the square l0ss).

The competitive approach to regression started with Foster (1991), who provided com-
petitive bounds for a variant of the ridge regression algorithm (under the square loss).
Vovk (2001) presents many competitive algorithms and provides bounds for linear regres-
sion (under the square loss) with an algorithm that differs slightly from the Bayesian one.
Azoury and Warmuth (2001) rederive Vovk’s bound with a different analysis based on
Bregman distances. Our work differs from these in that we consider Bayesian Gaussian



linear regression, while previous work typically used more complex, cleverly devised al-

gorithms which are either variants of a MAP procedure (as in Vovk, 2001) , or that involve

other steps such as “clipping” predictions (as in Azoury and Warmuth, 2001) . These dis-
tinctions are discussed in more detail in Section 3.1.

We should also note that when the loss function is the logloss, multiplicative weights algo-
rithms are sometimes identical to Bayes rule with particular choices of the parameters (see
Freund and Schapire, 1999) . Furthermore, Bayesian algorithms have been used in some
online learning settings, such as the sleeping experts setting of Freund et al. (1997) and the
online boolean prediction setting of Cesa-Bianchi et al. (1998). Ng and Jordan (2001) also
analyzed an online Bayesian algorithm but assumed that the data generation process was
not too different from the model prior. To our knowledge, there have been no studies of
Bayesian generalized linear models in an adversarial online learning setting (though many
variants have been considered as discussed above).

We also examine maximum a posteriori (MAP) algorithms for both Gaussian linear regres-
sion (i.e., ridge regression) and for (regularized) logistic regression. These algorithms are
often used in practice, particularly in logistic regression where Bayesian model averag-
ing is computationally expensive, but the MAP algorithm requires only solving a convex
problem. As expected, MAP algorithms are somewhat less competitive than full Bayesian
model averaging, though not unreasonably so.

2 Bayesian Model Averaging

We now consider the Bayesian model averaging (BMA) algorithm and give a bound on its
worst-case online loss. We start with some preliminarieszLetR™ denote the inputs of

a learning problem ang € R the outputs. Consider a model from the generalized linear
model family (see McCullagh and Nelder, 1989) , that can be writtefx, 0) = p(y|607 ),
wheref € R™ are the parameters of our modéf (denotes the transpose &f Note that

the predicted distribution af depends only oAz, which is linear ind. For example, in

the case of Gaussian linear regression, we have
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whereo? is a fixed, knownconstant that is not a parameter of our model. In logistic
regression, we would have

1 1
——+ (1 —1y)l 1- 2
1+ exp(—0Tz) +(1-y)losg < 1+ exp(—9T$)> - @
where we assumg € {0, 1}.

log p(y|=,0) = ylog

LetS = {(zM,yM), (@ y@), ..., (D), y1))} be an arbitrary sequence of examples,
possibly chosen by an adversary. We also $iseo denote the subsequence consisting of
only the firstt examples. We assume throughout this paper|thét|| < 1 (where|| - ||
denotes thd.» norm).

Assume that we are going to use a Bayesian algorithm to make our online predictions.
Specifically, assume that we have a Gaussian prior on the parameters:

p(0) = N(6;0,0°1,),

wherel,, is then-by-n identity matrix,N(; i1, ¥) is the Gaussian density with mearand
covariances, andv? > 0 is some fixed constant governing the prior variance. Also, let

(Hﬁzl p(y D]z, 9)) p(6)
Jo (Hﬁzl ply@ |z, 0)) p(0)do

be the posterior distribution ovémiven the first training examples. We have that(0) =
p(0) is just the prior distribution.

pe(0) = p(0]S;) =



On iterationt, we are given the input(¥), and our algorithm makes a prediction using the
posterior distribution over the outputs:

p(yla®, 5,_1) = / p(yl2®, 0)p(8]S,_1)db.
0

We are then given the true labgl"), and we suffer logloss- log p(y®|z(®), S, ;). We
define the cumulative loss of the BMA algorithm afférounds to be
T
Lpma(S) = Z —log p(y®z® S, ).

t=1
Importantly, note that even though the algorithm we consider is a Bayesian one, our theo-
retical results daot assume that the data comes from any particular probabilistic model.
In particular, the data may be chosen by an adversary.

We are interested in comparing against the loss of any “expert” that uses some fixed pa-
rameters) € R”. Definely(t) = —logp(y®|z™®, ), and let
T T
= to(t) = —logp(y"[z",0).
= t=1
Sometimes, we also wish to compare against distributions over experts. Given a distribution
Q overd, definel(t) = [, —Q logp(y(t) lz®), 0)dh, and

)= tot) = [ eoris)

This is the expected logloss incurred by a procedure that first samplesfsem@ and
then uses thig for all its predictions. Here, the expectation is over the randpnot over
the sequence of examples. Note that the expectation is of the logloss, which is a different
type of averaging than in BMA, which had the expectation and the log in the reverse order.

2.1 A Useful Variational Bound

The following lemma provides a worst case bound of the loss incurred by Bayesian algo-
rithms and will be useful for deriving our main result in the next section. A result very
similar to this (for finite model classes) is given by Freund et al. (1997). For completeness,
we prove the result here in its full generality, though our proof is similar to theirs. As usual,

defineKL(q||p) = [, q(0)log Zgz)

Lemma 2.1 LetQ be any distribution ovef. Then for all sequences
Lpma(S) < Lo(S) + KL(Q|[po)-

Proof: LetY = {yM),...,y(M}andX = {zV),... 2(T)}. The chain rule of conditional
probabilities implies thaLgya (S) = —log p(Y|X) andLy(S) = —logp(Y|X, 6). So
Linia ()~ La($) = —logn(Y|X) + [ Qo) logp(¥1X.0)d0
p(Y|X,0)
= e
By Bayes rule, we have that-(4) = pmf# Continuing,

/Q(9)1
/Q de /Q

= KL(Qllpo) — KL(QHpT
Together with the fact thak'L(Q||pr) > 0, this proves the lemma. O



2.2 An Upper Bound for Generalized Linear Models

For the theorem that we shortly present, we need one new definition. f,I(e} =
—logp(y|0Tz = 2). Thus, f,u (07z®) = £y(t). Note that for linear regression (as
defined in Equation 1), we have that for gll

1
1y (&) == @)

g
and for logistic regression (as defined in Equation 2), we have thatdof0, 1}

[fy () <1.

Theorem 2.2: Supposef,(z) is continuously differentiable. Létbe a sequence such that
[|lz]| < 1 and such that for some constan{ f/,, (z)| < ¢ (for all ). Then for allf*,

1 a2 1 Tev?
< " — _
Linaa(8) < Lo- () + gz 911 + 5 og (14 72 ) (@

The [|0*||?/2v? term can be interpreted as a penalty term from our prior. Ibeerm is
how fast our loss could grow in comparison to the kEstimportantly, this extra loss is
only logarithmic inT" in this adversarial setting.

This bound almost identical to those provided by Vovk (2001); Azoury and Warmuth (2001)
and Foster (1991) for the linear regression case (under the square loss); the only difference
is that in their bounds, the last term is multiplied by an upper boung@n In contrast,

we require no bound on® in the Gaussian linear regression case due to the fact that we
deal with the logloss (also recaff;’(z)| = - for all y).

Proof: We use Lemma 2.1 witt() = N(6;6*,¢%1,,) being a normal distribution with
meand* and covariance?l,,. Here,e? is a variational parameter that we later tune to get
the tightest possible bound. Lettiftg(Q) = 3 log 2mee? be the entropy of), we have

B 1 1 N\
KL(Qllpo) = /9@(9) log {WW exp (2y20 9)] do — H(Q)

_ 1 T n

= nlogv+ 21/2/9Q(9)9 0do 3 nloge

1 (2 2y _ M
= nlogy+ﬁ(||9 I +ne)f§fnloge. (5)

To prove the result, we also need to relate the errdrto that of L4-. By taking a Taylor
expansion off,, (assume € S), we have that
(2 — 2%)?

Fo(2) = 1y (Z) + [ (20 (2 = 27) + £/ (€(2)) —5—

for some appropriate functiah Thus, ifz is a random variable with meart, we have
*\2
* , Z—Z
BRG] = )+ 0 B e S

2
z— 2*)?
( )]

< fy(Z*)JFCEz [ D)

= f,(z")+ gVar(z)

Consider a single example, y). We can apply the argument above with= 6*Tz, and
z = 0Tz, wheref ~ Q. Note thatE[z] = z* sinceQ has mea*. Also, Var(#1z) =
2T (2 1,)r = ||z||*€% < €2 (because we previously assumed that < 1). Thus, we have
2
Eonqlfy(070)] < f,(67"2) +

ce

2



Sincel(t) = Egglf,w (0Tz®)] andly- (t) = f,w (0*"2®), we can sum both sides
fromt = 1to T to obtain

T
Lo(S) < Le-(S) + 7662
Putting this together with Lemma 2.1 and Equation 5, we find that
T 1
Lpma(S) < Lo« (S) + 7862 +nlogv + 52 (10*]]* + ne*) — g —nloge.

Finally, by choosing? = nf;iyg and simplifying, Theorem 2.2 follows. ]
2.3 A Lower Bound for Gaussian Linear Regression

The following lower bound shows that, for linear regression, no other prediction scheme is
better than Bayes in the worst case (when our penalty tefifii$?). Here, we compare to
anarbitrary predictive distributiony(y|z®, S,_,) for prediction at time, which suffers an

instant los?,(t) = —log ¢(y™®|z™®, S;_1). In the theorem|-| denotes the floor function.

Theorem 2.3 LetLy- (S) be the loss under the Gaussian linear regression model using the
parameter*, and letv? = o2 = 1. For any set of predictive distributiongy|=(*), S;_;),
there exists ar$ with ||z(*)|| < 1 such that

ééq(t) > inf(Lo- (8) + %Ha*”?) + glog <1 + ED

Proof: (sketch) Ifn = 1 and if S is such that:(¥) = 1, one can show the equality:
. 1, . 1
Lema(S) = lglf(Le*(S) + §H9 I1”) + B log(1 +1T)
Lety = {y®,...,yM}andX = {1,...,1}. By the chain rule of conditional probabil-

ities, Lpma (S) = —logp(Y|X) (wherep is the Gaussian linear regression model), and

q's loss isZtT:1 £,(t) = —log q(Y'|X). For any predictive distribution that differs from
p, there must exist some sequeritsuch that-log ¢(Y'| X) is greater than- log p(Y | X)
(since probabilities are normalized). Such a sequence proves the resukfor

The modification fom dimensions follows:S is broken into|7'/n| subsequences where
in every subsequence only one dimensionakfé?s: 1 (and the other dimensions are set to
0). The result follows due to the additivity of the losses on these subsequences. [

3 MAP Estimation

We now present bounds for MAP algorithms for both Gaussian linear regression (i.e., ridge
regression) and logistic regression. These algorithms use the maxdmuyrof p;_; (6) to
form their predictive distributiop(y|=(*), §,_,) at timet, as opposed to BMA’s predictive

distribution ofp(y|=(), S;_1). As expected these bounds are weaker than BMA, though
perhaps not unreasonably so.

3.1 The Square Loss and Ridge Regression

Before we provide the MAP bound, let us first present the form of the posteriors and the
predictions for Gaussian linear regression. Define= L1, + 5 >, @27 and

b =", 2y, We now have that

pi(0) = p(0]S0) = N (0:00,3) . (6)
wheref, = A7 'b,, andS, = A; . Also, the predictions at time+ 1 are given by
p(y T2 S = N (y(”l);@t+1,s?+1) ©)



whereg, 1 = 07 20+0, 52| = 2+, 20+ 4 52 1 contrast, the prediction of a
fixed expert using parametét would be

ply®]z®, 6%) :N( M.y & ) ®)
wherey? = 6+ z(®),
Now the BMA loss is:
T
L - (t) ()2 4. 52
BMA (5) tz; 28t( 0F 122 4 log \/2ms? 9)

Importantly, note how Bayes is adaptively weighting the squared term with the inverse

variances /s; (which depend on the current observatigh'). The logloss of using a fixed
expertd* is just:

1
55U (y® — 0T 21)2 4 log V2ro? (10)
g

Ma

Lo (S
t=1
The MAP procedure (referred to as ridge regression) nggs ("), ét,l) which has dixed
variance. Hence, the MAP loss is essentially the square loss and we define it as such:
T

oW =021, - Z ® _gTx®)2 (11)
t=1

t=1

—_

Laap(S) =

| =
[N}

whered, is the MAP estimate (see Equation 6).

Corollary 3.1: Lety? = o2 + v2. For all S such that|z(®|| < 1 and for all§*, we have
2 2 2
vy 2 Y°n Tv
L —||0 —1 1+ —
() + Lglor| + 2 og( " U%)

Proof: Using Equations (9,10) and Theorem 2.2, we have

zMAP(S) <

q‘q

1 1 .
—2 (y® —9T (20?2 22— (y® -0 Tx(t)) ||9 12
=1 <5t t=1
n
—lo + log
(14 ) S

Equations (6, 7) imply that? < s? < o2 + 2. Using this, the result follows by notlng
that the last term is negative and by muIt|pIy|ng both sides of the equatiofi Byv>.

We might have hoped that MAP were more competitive in that the leading coefficient,
~ 2

in front of the Ly~ (S) term in the bound, bé (similar to Theorem 2.2) rather thah .

Crudely, the reason that MAP is not as effective as BMA is that MAP does not take into

account thauncertaintyin its predictions—thus the squared terms cannot be reweighted to
take variance into account (compare Equations 9 and 11).

Some previous (non-Bayesian) algorithms did in fact have bounds with this coefficient
being unity. Vovk (2001) provides such an algorithm, though this algorithm differs from
MAP in that its predictions at time are a nonlinear function of(*) (it usesA, instead

of A;_; at timet). Foster (1991) provides a bound with this coefficient beingith

more restrictive assumptions. Azoury and Warmuth (2001) also provide a bound with a
coefficient ofl by using a MAP procedure with “clipping.” (Their algorithm thresholds the
predictionj, = A7 () ifitis larger than some upper bound. Note that we do not assume
any upper bound op®).)



As the following lower bound shows, it is not possible for the MAP linear regression algo-

rithm to have a coefficient af for Ly- (S), with a reasonable regret bound. A similar lower
bound is in Vovk (2001), which doesn’t apply to our setting where we have the additional
constraint|z®|| < 1.

Theorem 3.2 Lety? = o2 + v2. There exists a sequenSewith ||z || < 1 such that
- . 1.
Lyap(S) > 1gl*f(L9*(S) + §H9 12) + Q(T)

Proof: (sketch) LetS be a lengthl” + 1 sequence, withh = 1, where for the firs” steps,

z® =1/y/T andy® =1,and atl’ + 1, z(T*+Y = 1 andy(T+1) = 0. Here, one can show
thatinfg. (Le~ (S) + 1]|6*|*) = T/4 and Lyap(S) > 37'/8, and the result follows. O

3.2 Logistic Regression

MAP estimation is often used for regularized logistic regression, since it requires only
solving a convex program (while BMA has to deal with a high dimensional integral over
0 that is intractable to compute exactly). Lettiig ; be the maximum of the posterior

pi—1(6), defineLyap(S) = 37_, —logp(y®|z®, 8, ;). As with the square loss case,
the bound we present is multiplicatively worse (by a factot)of

Theorem 3.3 In the logistic regression model with< 0.5, we have that for all sequences
S such that|=(¥)|| < 1 andy® < {0, 1} and for all§*

2 k2 Tv?
Proof: (sketch) Assume: = 1 (the general case is analogous). The proof consists of
showing that/;  (t) = —log p(y®)2™, 0, 1) < 4¢pma(t). Without loss of generality,
assumey(¥) = 1 andz® > 0, and for convenience, we just writeinstead ofz(*). Now
the BMA prediction isf, p(1|0, z)p;—1(6)d6, andlsy4 (t) is the negative log of this. Note
6 = oo gives probabilityl for y*) = 1 (and this setting of minimizes the loss at tim#).
Since we do not have a closed form solution of the posterjor, let us work with an-
other distributiong(#) in lieu of p,_;(#) that satisfies certain properties. Defing =
J, (116, 2)q()d6, which can be viewed as the prediction usingther than the posterior.

We choose; to be the rectification of the Gaussian(; 9},17 v?1,,), such that there is

positive probability only for§ > Op_1 (and the distribution is renormalized). With this
choice, we first show that the loss@f— log p,, is less than or equal s\ (). Then we
complete the proof by showing thgt () < —4logp,, since—logp, < lpmal(t).

Consider the; which maximizeg, subject to the following constraints: letd) have its
maximum atd;_;; let ¢(¢) = 0 if 6 < 6;_; (intuitively, mass to the left of,_; is just
making thep, smaller); and impose the constraint thaflog ¢(9))” > 1/v%. We now
argue that for such @ —logp, < ¢gma(t). First note that due to the Gaussian prigr it

is straightforward to show that(logp;_1)"”(6) > y% (the prior imposes some minimum
curvature). Now if this posteriop,—, were rectified (with support only fo# > 6;_;)

and renormalized, then such a modified distribution clearly satisfies the aforementioned
constraints, and it has loss less than the losg;0f itself (since the rectification only
increases the prediction). Hence, the maximigeof p, subject to the constraints has loss
less than that of,_1, i.e. —log p, < fema ().

We now show that such a maximalis the (renormalized) rectificz}tion of the Gaussian
N(0;0,_1,v%1,), such that there is positive probability only for> 6, ;. Assume some
otherg, satisfied these constraints and maximigedit cannot be thagz (6:—1) < g(6:—1),



else one can showy; would not be normalized (since witﬁ(ét,l) < q(ét,l), the cur-
vature constraint imposes that this cannot crosg). It also cannot be thaf(6;—1) >

q(6;—1). To see this, note that normalization and curvature implyg¢hatust crosg, only
once. Now a sufficiently slight perturbation of this crossing point to the left, by shifting
more mass from the left to the right side of the crossing point, would not violate the cur-
vature constraint and would result in a new distribution with lagggrcontradicting the

maximality of . Hence, we have that (6;_;) = ¢(f;_1). This, along with the curvature
constraint and normalization, imply that the rectified Gaussijais,the unique solution.

To complete the proof, we shofy () = — log p(1|z, 0;—1) < —4logp,. We consider
two casesf;_; < 0andd,_; > 0. We start with the cas®_; < 0. Using the boundedness
of the derivativdd log p(1|x, 0) /06| < 1 and that only has support fof > 6,_;, we have

by = / exp(log p(1]z, 0))g(0)do

IN

/exp (1og(p(1\x, ét_l) +0— ét—l) q(6)do < 1.6p(1|x,ét_1)
0

where we have used th@if exp (6 — 0:_1)q(0)df < 1.6 (which can be verified numerically
using the definition of with v~ < 0.5). Now observe that foét_l < 0, we have the lower
bound—logp(1|x,ét,1) > log2. Hence,—logp, > —10gp(1|x,ét,1) —logl.6 >
(—logp(1|z,0;—1))(1—log 1.6/log 2) > 0.3¢; (t), which shows; (t) < —4logp,.

Now for the casd),_, > 0. Leto be the sigmoid function, sp(1|z,0) = o(z) and
pq = J, 0(x0)q()d6. Since the sigmoid is concave fér> 0 and, for this case; only has

support from positivé, we have thap, < ¢ (x fe 9q(9)d9). Using the definition of;, we
then have thap, < o(z(6;_, +v)) < o(f;_1 + ), where the last inequality follows from
0,_1 + v > 0 andz < 1. Using properties of, one can show(log o)/ (z)| < —logo(2)
(for all z). Hence, for ald > 6;,_1, |(logo)' (A)] < —logo(0) < —logo(f;_y). Using
this derivative condition along with the previous boundgn we have that-log p, >
~logo(fi-1 + v) > (—logo(f_1))(1 —v) = € ()(1 — v), which shows that
£s,_(t) < —4logp, (sincev < 0.5). This proves the claim whefy_; > 0. O

Acknowledgments. We thank Dean Foster for numerous helpful discussions. This work
was supported by the Department of the Interior/DARPA under contract NBCHD030010.

References

Azoury, K. S. and Warmuth, M. (2001). Relative loss bounds for on-line density estimation with the
exponential family of distributionsMachine Learning43(3).

Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D., Schapire, R., and Warmuth, M. (1997).
How to use expert advicel. ACM 44.

Cesa-Bianchi, N., Helmbold, D., and Panizza, S. (1998). On Bayes methods for on-line boolean
prediction. Algorithmica 22.

Dawid, A. (1984). Statistical theory: The prequential approdctRoyal Statistical Society

Foster, D. P. (1991). Prediction in the worst ca&anals of Statisticsl9.

Freund, Y. and Schapire, R. (1999). Adaptive game playing using multiplicative we@aitses and
Economic Behavigr29:79-103.

Freund, Y., Schapire, R., Singer, Y., and Warmuth, M. (1997). Using and combining predictors that
specializeln STOC

Grunwald, P. (2005). A tutorial introduction to the minimum description length principle.

McCullagh, P. and Nelder, J. A. (1983}eneralized Linear Models (2nd edGhapman and Hall.

Ng, A. Y. and Jordan, M. (2001). Convergence rates of the voting Gibbs classifier, with application
to Bayesian feature selection. Rroceedings of the 18th Int’l Conference on Machine Learning

Vovk, V. (2001). Competitive on-line statistickternational Statistical Revievé9.



