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Abstract

We present a competitive analysis of some non-parametric Bayesian al-
gorithms in a worst-case online learning setting, where no probabilistic
assumptions about the generation of the data are made. We consider
models which use a Gaussian process prior (over the space of all func-
tions) and provide bounds on the regret (under the log loss) for com-
monly used non-parametric Bayesian algorithms — including Gaussian
regression and logistic regression — which show how these algorithms
can perform favorably under rather general conditions. These bounds ex-
plicitly handle the infinite dimensionality of these non-parametric classes
in a natural way. We also make formal connections to the minimax and
minimum description lengifMDL) framework. Here, we show precisely
how Bayesian Gaussian regression is a minimax strategy.

1 Introduction

We study an online (sequential) prediction setting in which, at each timestep, the learner is
given some input from the sét, and the learner must predict the output variable from the
set). The sequenc§(z, y:)|t = 1,...,T}is chosen by Nature (or by an adversary), and
importantly, we do not make any statistical assumptions about its source: our statements
hold for all sequences. Our goal is to sequentially predict the next fabeiven that we

have observee¢t<; andy_, (Wherex<, andy_, denote the sequencgs., ...z} and
{v1,..-y—1}). At each timet, we have a conditional distributioR(-|z<;,y ) over),

which is our prediction strategy that is used to predict the next varigblé/e then incur

the instantaneous losslog P(y:|x<:, y.,) (referred to adog losg, and the cumulative

loss is the sum of these instantaneous lossestovet, ..., T.

Let © be a parameter space indexing elementary prediction rules in some model class,
whereP(y|z, 6) for 6 € © is a conditional distribution ovey called thdikelihood An ex-

pertis a single atond € ©, or, more precisely, the algorithm which outputs the predictive
distribution P(-|x, 8) for everyt. We are interested in bounds on tlegret— the differ-

ence in the cumulative loss of a given adaptive prediction strategy and the the cumulative
loss of the best possible expert chosen in hindsight from a subé&et of

Kakade and Ng [2004] considered a parametric setting where R¢, X = R¢, and

the prediction rules were generalized linear models, in whit¢h|z,0) = P(y|6 - z).

They derived regret bounds for the Bayesian strategy (assuming a Gaussian pri@j,over
which showed that many simple Bayesian algorithms (such as Gaussian linear regression
and logistic regression) perform favorably when compared, in retrospect, to thedoéxt
Importantly, these regret bounds have a time and dimensionality dependence of the form
g log T'— a dependence common in in most MDL procedures (see Grunwald [2005]). For
Gaussian linear regression, the bounds of Kakade and Ng [2004] are comparable to the best
bounds in the literature, such as those of Foster [1991], Vovk [2001], Azoury and Warmuth



[2001] (though these latter bounds are stated in terms of the closely related square loss).

In this paper, we provide worst-case regret bounds on Bayesian non-parametric methods,
which show how these algorithms can have low regret. In particular, we examine the case
where the prior (over functions) is a Gaussian process — thereby extending the work of
Kakade and Ng [2004] to infinite-dimensional spaces of experts. There are a number of
important differences between this and the parametric setting. First, it turns out that the
natural competitor class is tmeproducing kernel Hilbert space (RKH®&). Furthermore,

the notion of dimensionality is more subtle, since the sg@eeay be infinite dimensional.

In general, there is no apriori reason that any strategy (including the Bayesian one) should
be able to compete favorably with the complex clats However, for some input se-
quencesc<7 and kernels, we show that it is possible to compete favorably. Furthermore,
the relation of our results to Kakade and Ng [2004] is made explicit in Section 3.2.

Our second contribution is in making formal connections to minimax theory, where we
show precisely how Bayesian Gaussian regression is a minimax algorithm. In a general
setting, Shtarkov [1987] showed that a certagmmalized maximum likelihoo@ML) dis-
tribution minimizes the regret in the worst case. Unfortunately, for some “complex” model
classes, there may exist no strategy which achieves finite regret, and so the NML distribu-
tion may not exist. Gaussian density estimation (formally described in Example 4.2) is
one such case where this NML distribution does not exist. If one makes further restrictions
(on )), then minimax results can be derived, such as in Takimoto and Warmuth [2000],
Barron et al. [1998], Foster and Stine [2001].

Instead of making further restrictions, we propose minimizing a formperaalized regret

where one penalizes more “complex” experts as measured by their cost undergrior

This penalized regret essentially compares our cumulative loss to the loss of a two part code
(common in MDL, see Grunwald [2005]), where one first codes the mbdabter a prior

¢ and then codes the data using thidHere, we show that a certaimormalized maximum

a posterioridistribution is the corresponding minimax strategy, in general. Our main result
here is in showing that for Gaussian regression, the Bayesian strategy is precisely this
minimax strategy. The differences between this result and that of Takimoto and Warmuth
[2000] are notable. In the later, they assuphe R is bounded and derive (near) minimax
algorithms which hold the variance of their predicti@mmnstantat each timestep (so they
effectively deal with the square loss). Under Bayes rule, the variance of the predictions
adapts, which allows the minimax property to hold wjth= R being unbounded.

Other minimax results have been considered in the non-parametric setting. The work of
Opper and Haussler [1998] and Cesa-Bianchi and Lugosi [2001] provide minimax bounds
in some non-parametric cases (in terms of a covering number of the comparator class),
though they do not consider input sequences.

The rest of the paper is organized as follows: Section 2 summarizes our model, Section 3
presents and discusses our bounds, and Section 4 draws out the connections to the minimax
and MDL framework. For space constraints, all proofs are available in a longer version of
this paper available (see Seeger et al. [2005]).

2 Bayesian Methods with Gaussian Process Priors

With a Bayesian prior distributiof,ayed ) over©, the Bayesian predicts using the rule

Pbayeiyt‘m§t7y<t) = /P(yt‘xtaG)Pbayes(0|m<tay<t) do

where the posterior is given by
Pbayes{9|-’”<t7 ?J<t) X P(y<t|w<t7 9)Pbay65(9)~
For these cases, the normalization constant of the NML distribution is not finite.




Assuming the Bayesian learner models the data to be independentgihem

t—1
Py |@<, 0) = H P(yv |y, 0).
t'=1
It is important to stress that these are “working assumptions” in the sense that they lead to
a prediction strategy (the Bayesian one), but the analysis mimtenake any probabilistic
assumptions about the generation of the data. The cumulative loss of the Bayesian strategy
is then

T
- Z log Pbayes(yt|53§t7 y<t) = —log Pbayeiyngch)-
t=1
which follows form the chain rule of conditional probabilities.

In this paper, we are interested in non-parametric prediction, which can be viewed as work-
ing with an infinite-dimensional function spa¢é® — assumeO consists of real-valued
functionsu(z). The likelihoodP(y|z,u(-)) is thus a distribution ovey givenz and the
functionu(-). Similar to Kakade and Ng [2004] (where they considered generalized linear
models), we make the natural restriction tld|x, u(-)) = P(y|u(z)). We can think of

u as a latent function and d?(y|u(x)) as a noise distribution. Two particularly important
cases are that of Gaussian regression and logistic regressi@aulsian regressiqgrwe

have thaty = R and thatP(ylu(z)) = N (ylu(z),0?) (soy is distributed as a Gaus-
sian with mearnu(z) and fixed variance?). In logistic regression) = {-1,1} and

P(ylu(z)) = (1 +e7v)) 7L,

In this paper, we consider the case in which the ptliBsayedu(-)) is a zero-meaGaus-
sian process (GPYith covariance functiotk(, i.e. a real-valued random process which has
the property that for every finite set, . . ., z,, the random vectofu(z,), ..., u(x,))T is
multivariate Gaussian, distributed A§(0, K'), where K € R™" is the covariance (or
kernel) matrix withK; ; = K (z;, ;). Note thatX has to be a positive semidefinite func-
tion in that for all finite sets, . .., x, the corresponding kernel matric&S are positive
semidefinite.

Finally, we specify the subset of experts we would like the Bayesian prediction strategy to
compete against. Every positive semidefinite kedidk associated with a uniquepro-
ducing kernel Hilbert space (RKH%j, defined as follows: consider the linear space of all
finite kernel expansions (over amy, ..., z,) of the form f(z) = "7 | a; K (z, z;) with

the inner product

@ J e i,J
and define the RKH3{ as the completion of this space. By constructih¢ontains all
finite kernel expansiong(z) = >, & K (z, z;) with
Ik =a"Ka, K;;=K(;,z;). 1)

The characteristic property &f is that all (Dirac) evaluation functionals aepresentedn
H itself by the functionsK (-, z;), meaning(f, K(-,z;))x = f(x;). The RKHSH turns
out to be the largest subspace of experts for which our results are meaningful.

3 Worst-Case Bounds

In this section, we present our worst-case bounds, give an interpretation, and relate the
results to the parametric case of Kakade and Ng [2004]. The proofs are available in the
long version [Seeger et al., 2005].



Theorem 3.1: Let (x <7, y~) be a sequence froit’ x ))T. For all functionsf in the
RKHSH associated with the prior covariance functidn, we have

1 1
—log PhayedY<r|x<7) < —log P(y<rlx<T, f(-)) + §Hf||%< + 5 log [T + cK],

where|| f|| x is the RKHS norm of, K = (K (x4, z+)) € RTT is the kernel matrix over
the input sequence<r, andc > 0 is a constant such that for alk; € y,

2

d
! log P(yilu) < ¢

for all u € R.

The proof of this theorem parallels that provided by Kakade and Ng [2004], with a number
of added complexities for handling GP priors. For the special case of Gaussian regression
wherec = o2, the following theorem shows the stronger result that the bound is satisfied
with an equality for all sequences.

Theorem 3.2: AssumeP (y|u(z:)) = N (y¢|u(x;),0?) and thaty = R. Let(z<p,y~r)

be a sequence froft’ x ))T and f be a function from the RKH& associated with the
prior covariance functiork’. Then,

. 1
—log PbayeiygT‘wST) = Hun {— log P(?JgT|$§T7 f()+ —||f||12r<}
fer 2 @)
1
+ §log‘I+a_2K|

and the minimum is attained for a kernel expansion awef.

This equality has important implications in our minimax theory (in Corollary 4.4, we make
this precise). Itis not hard to see that the equality does not hold for other likelihoods.

3.1 Interpretation

The regret bound depends on two terh||% andlog | + cK |. We discuss each in turn.
The dependence ojf||% states the intuitive fact that a meaningful bound can only be
obtained under smoothness assumptions on the set of experts. The more complisated
(as measured by - || ), the higher the regret may be. The equality shows in Theorem 3.2
shows this dependence is unavoidable. We come back to this dependence in Section 4.

Let us now interpret théog |I + cK | term, which we refer to as the regret term. The
constante, which bounds the curvature of the likelihood, exists for most commonly used
exponential family likelihoods. For logistic regression, we have- 1/4, and for the
Gaussian regression, we have- 2. Also, interestingly, whilef is an arbitrary function

in H, this regret term depends d& only at the sequence points:r.

For most infinite-dimensional kernels and without strong restrictions on the inputs, the
regret term can be as large @67") — the sequence can be chosen &t.~ ¢'I, which
implies thatlog [T + c¢K| = T'log(1 + ¢c’). For example, for an isotropic kernel (which

is a function of the nornjjz — z’||2) we can choose the; to be mutually far from each
other. For kernels which barely enforce smoothness — e.g. the Ornstein-Uhlenbeck kernel
exp(—b||lx — z'||1) — the regret term can easify(7"). The cases we are interested in are
those where the regret termd6T"), in which case the average regret tend8 wwith time.

A spectral interpretation of this term helps us understand the behavior. If we let the
A1, A2, ... Ar be the eigenvalues dK, then

T
log|I +cK| = Zlog(l +ch) <trK
t=1



wheretr K is the trace ofK. This last quantity is closely related to the “degrees of
freedom” in a system (see Hastie et al. [2001]). Clearly, if the sum of the eigenvalues has
a sublinear growth rate of(T'), then the average regret tends0toAlso, if one assumes

that the input sequence«r, is i.i.d. then the above eigenvalues are essentiallptheess
eigenvalues. In the long version [Seeger et al., 2005], we explore this spectral interpretation
in more detail and provide a case using the exponential kernel in which the regret grows as
O(poly(logT)). We now review the parametric case.

3.2 The Parametric Case

Here we obtain a slight generalization of the result in Kakade and Ng [2004] as a special
case. Namely, the familiar linear model — wittiz) = 6 - z, 6,2 € R? and Gaussian
prior § ~ N(0, I) — can be seen as a GP model with the linear kerf€l, =) = z - /.

With X = (z1, ... z7)" we have that a kernel expansigtw) = >, a;z; - @ = 0 - z with
0=X"a,and|f||% = a"X XTa = ||0]]3, so that = {#- 2|0 € R?}, and so

log|I +cK|=log|I+cX'X|

Therefore, our result gives an input-dependent version of the result of Kakade and Ng
[2004]. If we make the further assumption tHat||; < 1 (as done in Kakade and Ng
[2004]), then we can obtain exactly their regret term:

T
log [T + cK| < dlog (1—&-%)

In general, this example shows thatif is a finite-dimension kernel such as the linear or
the polynomial kernel, then the regret term is o6lglog T').

4 Relationships to Minimax Procedures and MDL

This section builds the framework for understanding the minimax property of Gaussian re-
gression. We start by reviewing Shtarkov’s theorem, which shows that a certain normalized
maximum likelihood density is the minimax strategy (when using the log loss). In many
cases, this minimax strategy does not exist — in cases where the minimax regret is infinite.
We then propose a different, penalized notion of regret, and show that a centaialized
maximum a posteriodensity is the minimax strategy here. Our main result (Corollary 4.4)
shows that for Gaussian regression the Bayesian strategy is precisely this minimax strategy

4.1 Normalized Maximum Likelihood

Here, let us assume that there are no inputs — sequences consist 9f enly. Given a
measurable space with base meagtinge employ a countable number of random variables
y¢ in Y. Fix the sequence lengfh and define the model class = {Q(:]9) |6 € ©)},
whereQ(-|#) denotes a joint probability density ov@f with respect tqu.

We assume that for our model class there is a single pararéigt@y..-), maximizing the

likelihood Q(y 1 |0) over© for all y_, € YT. We make this assumption to make the
connections to maximum likelihood (and, later, MAP) estimation clear. Define the regret
of a joint densityP ony . as:

R(ySTvpa 0) = —logP(yST) - Higg{_bg@(ygﬂg)} (3

= —log P(y<r) +1og Q(y<r|0m(y<r)) (4)
where the latter step uses our assumption on the existertgg(gt ).



Define the minimax regret with respect@oas:
R(C"‘)) = HI})f sup R(ySTv Pa 6)

Yy<p VT
where thenf is over all probability densities ohi” .
The following theorem due to Shtarkov [1987] characterizes the minimax strategy.

Theorem 4.1:[Shtarkov, 1987]If the following density exists (i.e. if it has a finite normal-
ization constant), then define it to be thermalized maximum likelihooNML) density.

_ Q(y§T|9m|(y§T))
fQ(ygT\gml(ygT))dﬂ(ygT)

If P exists, it is a minimax strategy, i.e. for ajl.1, the regretR(y ., P, ©) does not
exceedR(0O).

Pml(ygT) )

Note that this density exists only if the normalizing constant is finite, which is not the
case in general. The proof is straightforward using the fact that the NML density is an
equalizer— meaning that it hasonstantregret on all sequences. More specifically, for all

To see this, simply substitute Eq. 5 into Eq. 4 and simplify.

Proof: For convenience, define the regret of any as R(P,0) =
SUDy _, ey R(y<r, P,©). ForanyP # Py (differing on a set with positive measure),

there exists somg. - such thatP(y ) < Pmi(y<7), Since the densities are normalized.
This implies that - B

R(P, 6) 2 R(:’JST?‘P’ @) > R(yST’PmI’ @) = R(th@)

where the first step follows from the definiton oR(P,©), the second from
—log P(y<r) > —log Pmi(y<r), and the last from the fact th&, is an equalizer (its
regret is constant on all sequences). Herithas a strictly larger regret, implying th&},
is the unique minimax strategy. |

Unfortunately, in many important model classes, the minimax regf€X) is not finite, and
the NML density does not exist. We now provide one example (see Grunwald [2005] for
further discussion).

Example 4.2: Consider a model which assumes the sequence is generated i.i.d. from
a Gaussian with unknown mean and unit variance. Specificaly@let R, Y = R,

and P(y.,|0) be the productl’_ N (y;;60,1). It is easy to see that for this class the
minimax regret is infinite and’y, does not exist (see Grunwald [2005]). This example
can be generalized to the Gaussian regression model (if we know the sequende
advance). For this problem, if one modifies the space of allowable sequenceg(iis.
modified), then one can obtain finite regret, such as those in Barron et al. [1998], Foster
and Stine [2001]. This technique may not be appropriate in general.

4.2 Normalized Maximum a Posteriori

To remedy this problem, consider placing some structure on the model £lass
{Q(-|0)|¢ € ©}. The idea is to penaliz€(-|¢) € F based on this structure. The mo-
tivation is similar to that of structural risk minimization [Vapnik, 1998]. Assume thas

a measurable space and place a prior distribution with density fungtor®. Define the
penalized regredbf P ony. as:

RQ(y§T>P7@) = —log P('!JgT) - eirelé{—log Q(’!JgTW) —logq(0)} .



Note that—log Q(yr|0) — log ¢(8) can be viewed as a “two part” code, in which we

first coded under the prioy and then codey ;- under the likelihood)(-|#). Unlike the
standard regret, the penalized regret can be viewed as a comparison to an actual code.
These two part codes are common in the MDL literature (see Grunwald [2005]). However,
in MDL, they consider using minimax schemes (¥ia) for the likelihood part of the code,

while we consider minimax schemes for this penalized regret.

Again, for clarity, assume there is a single paramet@pag(y<;) maximizing
log Q(yr|0) + logq(f). Notice that this is just the maximum aposteriori (MAP) pa-
rameter, if one were to use a Bayesian strategy with the pi(since the posterior density
would be proportional té)(y-|6)q(0)). Here,

Rq(ygTa P,0) = —log P(ygT) + log Q(ygTWmap(ygT)) + log Q(Qmap(ygT))

Similarly, with respect t@®, define the minimax penalized regret as:
Rq(®) = ir;f sup Rq(ygTPa@)

Y<r€YT

where again thénf is over all densities op”. If © is finite or countable an@(-|6) > 0

for all 9, then the Bayes procedure has the desirable property of having penalized regret
which is non-positivé. However, in general, the Bayes procedure does not achieve the
minimax penalized regrei?,(0©), which is what we desire — though, for one case, we
show that it does (in the next section).

We now characterize this minimax strategy in general.

Theorem 4.3 Define thenormalized maximum a posteridflMAP) density, if it exists, as:

Prao(y—7) = Q(Y<1|Omap(y<7))q(Omaply<7)) (6)
may - .

PEsT f Q(ygT|9map(ygT))Q(9map(ygT)) dﬂ(ygT)
If Prap€Xists, itis a minimax strategy for the penalized regret, i.e. fogal},, the penalized

regret R, (y <7, Pmap, ©) does not exceeft, ().

The proof relies orPy,p being anequalizerfor the penalized regret and is identical to that
of Theorem 4.1 — just replace all quantities with their penalized equivalents.

4.3 Bayesian Gaussian Regression as a Minimax Procedure

We now return to the setting with inputs and show how the Bayesian strategy for the Gaus-
sian regression model is a minimax stratégyall input sequences <. If we fix the input
sequencec<r, we can consider the competitor class tobe= {P(yr|lx<r,0)|0 €

0)}. In other words, we make the more stringent comparison against a model class which
hasfull knowledgeof the input sequence in advance. Importantly, note that the learner only
observes the past inputs.; at timet.

Consider the Gaussian regression model, with likelihaBly.|x<r,u()) =
N(y<plu(z<7),0*I), whereu(-) is some function and is theT' x T identity. For
technical reasons, we damt define the class of competitor functioBsto be the RKHSH,
but instead defin® = {u(-)|u(z) = Zthl oK (7,24), a € RT} — the set of kernel
expansions ovee<y. The model class is thef = {P(-|x<7,u(-)) |u € ©}. The rep-
resenter theorem implies that competing agathés equivalent to competing against the
RKHS.

2To see this, simply observe thatPhayed Y <) = >0 Q(Y<r10)q(9) >
QY <7 |Omap(y <)) q(Omap(y <)) and take the- log of both sides.




Itis easy to see that for this case, the NML density does not exist (recall Example 4.2) —the
comparator clas® contains very complex functions. However, the case is quite different
for the penalized regret. Now let us consider using a GP prior. We chptsde the
corresponding density ovéd, which means thag(u) is proportional toexp(—||ul|%/2),
where|jul|% = a” Ka with K; ; = K(z;,z;) (recall Eq. 1). Now note that the penalty
—log q(u) is just the RKHS nornjlu||% /2, up to an additive constant.

Using Theorem 4.3 and the equality in Theorem 3.2, we have the following corollary,

which shows that the Bayesian strategy is precisely the NMAP distribution (for Gaussian
regression).

Corollary 4.4: For anyz<r, in the Gaussian regression setting described above — where
F and © are defined with respect ts< and whereg is the GP prior over© — we
have thatP,ayesis @ minimax strategy for the penalized regret, i.e. forgll;, the regret
Ry (Y <1, Poayes ©) does not exceeRt, (©). Furthermore,Pyayesand Prap are densities of

the same distribution.

Importantly, note that, while the competitor clagss constructed with full knowledge of
x<7 in advance, the Bayesian stratedlyes Can be implemented in an online manner in
that it only needs to know ., for prediction at time.
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