Calibration via Regression

Dean P. Foster
Statistics Department
University of Pennsylvania
Email: dean@foster.net

Abstract—1In the online prediction setting, the concept of
calibration entails having the empirical (conditional) frequencies
match the claimed predicted probabilities. This contrasts with
more traditional online prediction goals of getting a low cumula-
tive loss. The differences between these goals have typically made
them hard to compare with each other. This paper shows how
to get an approximate form of calibration out of a traditional
online loss minimization algorithm, namely online regression. As
a corollary, we show how to construct calibrated forecasts on a
collection of subsequences.

I. INTRODUCTION

Consider an online (sequential) prediction setting where, at
each timestep ¢, the learner must predict some value y; € [0, 1]
(it need not be binary) after being given some input from the
set z; € X — the task is to accurately predict the next label
y:, given that we have observed the sequences {x1,...x;}
and {y1,...y:—1}. We study the case the where the sequence
{(z¢,y:)} is arbitrary and make no statistical assumptions.
There is a growing body of work showing that many of
the learnable properties in an i.i.d. setting also hold in this
adversarial setting.

Let us start by considering one such setting — the case
of linear regression. For now, consider the case in which
inputs are binary vectors, i.e. x; € {0,1}%. Here, we predict
with §, = 6, - z, at time t (where 6, € R?) and suffer
the instant loss (7; — ;)?. For this case, even though the
sequence is arbitrary, one can show that (minor variants
of) ridge regression perform well in the online setting —
these algorithms choose the parameter 6; using a ridge re-
gression algorithm on the prior sequence before time ¢ (see
[Foster(1991)], [Vovk(2001)], [Azoury and Warmuth(2001)],
[Kakade and Ng(2004)]). They enjoy the guarantee that for
all ’comparison’ 6

T
Z@t —) <

t=1 t

T
(02— y)* +o(T)

=1

i.e. these online ridge regression algorithms (asymptotically,

on average) perform as well as the best single linear predictor.
Is this all we should expect from an online linear regression

algorithm? To answer this, let us briefly reexamine the i.i.d.

setting, where (x,y) ~ D, to see an additional property that

we might desire. Here, we chose the 6* which minimizes

Ep(0-z—y)®

Sham M. Kakade
Toyota Technological Institute
Email: sham@tti-c.org

By taking derivatives, we see that this 6* has the property that
for all ¢

E(zi(y—y) =0 (D

where § = 0* - z. The above is the so called normal equations
— the linear equations (in #*) used to solve for 6*. For the
case of binary z € {0,1}%, the normal equations state that
the optimal predictions will be unbiased on those times when
€Tr; = 1.

We might hope that in the online setting, for all ¢,

T
> 2B —ye)| = o(T) 2)
t=1

i.e. that (asymptotically, on average) our predictions are un-
biased on the subsequence where x;; = 1. It turns out that
standard online linear regression algorithms do not satisfy this
unbiasedness property.!

The notion of calibration in essence tries to address issues
of this form (see [Dawid(1984)])) — making calibrated fore-
casts involves having the empirical frequencies match their
predictions, on average, under various checks. One way of
formalizing this is as follows: a prediction rule is calibrated,
with respect to a fest function f :[0,1] — [0, 1], if

T
> F@) @ —)| = o(T)

The left hand side of this equation is referred to as the
calibration error with respect to f. This is the notion put
forth in [Kakade and Foster(2004)], which provided a (deter-
ministic) algorithm which was calibrated with respect to all
(Lipschitz) continuous test functions on all sequences. 2
Suppose that we now want to have this weak form of
calibration on a variety of subsequences. If we have d
(potentially overlapping) subsequences that we actually care
about, then we can define 2¢ boolean combinations of these

'We provide an example of how they fail. Consider the case in which
z¢ = 1 always, so our predictions are Jx = 0: € R. Here, we show how
the algorithm makes biased predictions on the entire sequence. Consider the
sequence which is y; = 0 for the first half and y; = 1 for the second half.
Common online regression algorithms essentially predict using the historical
average. This works fine in terms of the square loss. However the bias in the
predictions, |37, (¢ — y¢)|, will be Q(T).

2Stronger notions of calibration have been considered. The original notion
of calibration allows one to use discontinuous test functions. Here, one
needs to use randomization to prove existence of such calibrated algorithms.
See [Foster and Vohra(1999)], [Kakade and Foster(2004)]

subsequences, which are disjoint. If we are calibrated on all
2¢ disjoint subsequences, this implies the weaker statement
that we are calibrated on the original d subsequences. In
the linear regression setting (with binary inputs), to achieve
calibration on the d subsequences, one could run a calibration
algorithm separately on each of the 2¢ possible settings of z;
and this would clearly guarantee the unbiased condition on
each subsequence (i.e. it would satisfy Equation 2). However,
the convergence rate would be be exponential in d.

Instead, this paper directly focuses on calibrating with
respect to a few test functions. Let us extend the calibration
definition to allow the test function to depend on auxiliary
information (say the information provided by z;). We do this
by making the test functions time dependent — this time
dependence implicitly allows dependence on events that occur
before time ¢. The calibration condition with respect to f;
would then be
T

> @) @ — we)

t=1

=o(T) 3)

Again, the expression on the left hand side is referred to as
the calibration error with respect to f;. For example, if we
choose d functions fi 1, fi2,... fr,a such that f, ;(¥) = x;
then calibrating with respect to these functions corresponds to
being unbiased on each subsequence (as in Equation 2).

It is worthwhile to understand the relationship between this
calibration condition and the square loss. If the calibration
error is not sublinear in 7°, then one can show that there exists
some (3 such that the following regret

T T

D @ =) =Y @G+ BLEG) —)

t=1 t=1 +

is not sublinear in 7. 3 In other words, in retrospect, had we
predicted y; + B f:(y;) instead of 3, then our loss would have
been significantly lower. Roughly speaking, the calibration
condition stipulates that the test function f; must be uncor-
related (i.e. orthogonal) to the error y; — y;. If the two were
correlated (i.e. if the calibration condition were not satisfied),
then this means that adding in some amount of f;(y;) to our
predictions 7; would have improved our performance.

We focus on how to (quickly) calibrate with respect to a
finite set of functions f; 1, ft2,... ft,¢. The motivation is that
we might have some tests for which we care to be unbiased
on. For example, as discussed earlier, the choice f; ;(§) = x;
corresponds to a preference to satisfy the online analogue of
the normal equations (Equation 1). Alternatively, we could
chose the functions to be low order polynomials of 3. This
corresponds to the desire that, in retrospect, there should not
exist a low-order polynomial transformation of our predictions
that improve our performance.

3To see this, let R = fz;r:lft(ﬂt)(ﬂt — yt). One can show that the
regret is bounded by to [28R — 32T+, using Z;‘r:lff (yt) < T. Now if
|R| is not sublinear in T" one can choose a sufficiently small value of |3|
(B could be negative) such that this regret is above 67" (for some 6 > 0)
infinitely often, so the regret will not be sublinear it 7.

Our algorithm uses a simple modification on the pre-
existing machinery of online regression, and we show that
this is sufficient to calibrate with respect to these functions.
[Vovk(2005)] also considers a this setting and shows how
to calibrate using kernels corresponding to an RKHS — the
main differences are that we focus on how to calibrate on
a finite set of (preferred) functions and our algorithm is just
a simple variant of ridge regression. The basic idea of our
algorithm is to consider our past predictions when making
future predictions — to let the regression algorithm determine
how our predictions themselves may be correlating with the
prediction error. Our main results show that for any set of test
functions {f:1(-), ft.2(*), ... fr.a(-)} (bounded in [0, 1]), there
is an algorithm such that for all 4:

T

> Fei(@) @ — we)

t=1

< O(WTdInT)

which is sublinear in 7" as desired.

The remainder of the paper is organized as follows. As
regression is a tool in our algorithm, we start with a theorem
from online regression. Then we present our main result on
how to calibrate on a finite set of functions (and we briefly
discuss how to (asymptotically) achieve calibration on all
(Lipschitz) continuous test functions). We then return to the
case of linear regression and show how to satisfy the normal
equations. We briefly discuss the i.i.d. case and differences to
the online setting.

II. ONLINE REGRESSION

We now state a theorem from Azoury and Warmuth
(2001) on regression in the online setting (Theorem 4.6
in [Azoury and Warmuth(2001)]). The ridge regression algo-
rithm is shown in Algorithm 1. The algorithm takes as input
some z; (which need not be binary, but, for simplicity, we
restrict it to be in the unit interval) and at each step it outputs 7;
(which we always take to be in [0, 1]). Since a linear predictor
may sometimes output a value out of the range [0, 1], the
algorithm clips the output so that it always predicts in the
range [0, 1].

The following theorem bounds the performance of the
algorithm in terms of the performance of a constant linear
predictor.

Theorem 2.1:: [Azoury and Warmuth(2001)] For all se-
quences {x;} (such that ||z;|| < 1) and {y;} (bounded in
[0,1]), and for all 6, the performance of Algorithm 1 is
bounded as follows:

T T
Z@t —y)? < Z(e ~ay = ye)? + [101° + 2dIn(T + 1)
t=1 t=1

where || - || denotes the ¢5 norm.

Similar theorems have appeared in [Foster(1991)],

[Vovk(2001)], [Kakade and Ng(2004)].

Input : At each time ¢, we receive z; € [0, 1]%.
Output: At each time ¢, we predict 3; € [0, 1]
fort=1,2,...7T do

1. Set 6; to be

t—1
0, = argming {2(9 ‘xr —ye)? + |9||2}

=1

2. Predict with
Y = clip(0; - x4)

where clip() clips the input to be in [0, 1], i.e. it

outputs the point in [0, 1] closest to the input.
end

Input : At time ¢, we have f; : [0,] [0, 1)4+1,
Output: At each time ¢, we predict 3; € [0, 1]
fort=1,2,...7T do
1. Set 6; to be
t—1
0 = argmin, {2(9 fr(Yr) - yT)2 + ||9|2}
T=1

2. Predict with any 7; such that
yr = clip(0; - f1(Yt))

where clip() clips the input to be in [0, 1], i.e. it
outputs the point in [0, 1] closest to the input point.
end

Algorithm 1: Online Linear Ridge Regression

III. CALIBRATING WITH TEST FUNCTIONS

Now consider the test functions f; 1(9), fi1(Y), - - - fr.a()-
Just performing online regression, where we regress off of
these variables, would not be enough to satisfy our calibra-
tion conditions in general. For instance, as discussed in the
Introduction, if we choose f;; = x¢;, then regression off of
ft corresponds to linear regression, which does not calibrate
with respect to x; (i.e. Equation 2 is not satisfied in general).
However, consider including a function f; ¢(y) = ¥, for all ¢.
It turns out with this simple modification, the online regression
algorithm is sufficient to obtain our calibration goals.

However, note that that regressing off of these f;(y) is
rather subtle, since these functions depend on the predictions
themselves. This means at the time of prediction, a fixed point
condition must be solved (though this can be done with a one
dimensional line search, if not analytically). In the case of
linear regression (treated in the next section) this fixed point
condition can be solved analytically.

For notational convenience, we will write f;(y) =
(fe.0®), fr1(@), ... fr.a(Y)), so fi is really a d+1 dimensional
vector.

A. A Calibrated Regression Algorithm

Algorithm 2 is the procedure used to calibrate with respect
to these test functions. Intuitively, the algorithm is trying to
regress off of the the predictions it makes in order to achieve
the calibration condition. This involves solving a fixed point
equation, in Step 2.

We now show this fixed point exists.

Theorem 3.1:: If f is continuous, then the algorithm exists,
i.e. a fixed point 3, exists in Step 2.

Proof: First, if there exists a g; € [0, 1] such that g =
0 - fi(y:), then we are done, since clipping does not alter
this prediction. So assume this is not the case. In other words,
assume that the function 6; - f;() does not cross the function
g(y) = ¥ in the interval § € [0, 1], else the crossing point
would be a fixed point. Since f;(-) is continuous, then either
0; - f+(-) must lie completely above or completely below the

Algorithm 2: Calibrated Regression

curve g(-). If it lies below the curve, then 6;- f:(0) < g(0) = 0.
Hence, for this case, ; = 0 is a fixed point, since 0 = clip(6; -
f+(0)). Similarly, if 6, - fi(-) lies above g(-), then y; =1 is a
fixed point. []
B. Convergence Rates

The following Corollary bounds the performance of the
algorithm.

Corollary 3.2:: For all sequences {g; } and continuous { f;}
(both bounded in [0, 1]), and for all , the performance of
Algorithm 2 is bounded as follows:

T
Z @ —:)? Z 0- fo(Ge) —ye)* +1|01]*+2(d+1) In(T+1)
t=1 t=1

Proof: The proof follows directly from Theorem 2.1.
To see this, set z; = f+(g:) in Algorithm 1. The fixed point
condition in Step 2 assures that this is consistent. []

Using this, we can state our main theorem.

Theorem 3.3:: Let fi(y) = (feo(®), fr1(¥).--- fr.a(¥)
be continuous test functions (bounded in [0, 1]) such that

fto(y) =79. Let {y:} be bounded in [0, 1] and define

T
T = foz@t) +1
=1

Algorithm 2 has the following bound on the calibration error
for all test functions ¢ = 1,2,...d

IA

2¢/7(d+ 1) In(T + 1))

T
> Fei(@) @ — we)
t=1

< 2/(T+ 1) (d+1)In(T +1)

Proof: Consider setting g = 1 and 6; = 3, where ¢ £ 0
and the remainder of the components to be 0. By Corollary 3.2

T
t= 1

Zyﬂ-ﬂfm Ue) = yi)?

+14+42+2d+1)In(T+1) @)

since fo(y) = ¥ and ||0]|> = 1 + 8% Now consider the 3
which minimizes the right hand side. It is straightforward to
show (by setting the first derivative equal to 0) that this 3 is
just
T PO
= —2 =1 S1i W) (U — ye) _R
= = — =
Do (fra(y))?+1 7
where R and 7 are are defined to be the numerator and
denominator of this expression. We seek to bound R.
Simple algebra leads to:

T T R2
D @t Bfei) —w)* + 52 =Y (@ —we) — —
t=1 t=1
where we have used the definitions of R and 7. Using
Equation 4, this implies:

2
L <142(d+1)In(T+1) <4(d+1)In(T + 1)

i
Hence, we have that R is bounded by 2+/(d + 1)7In(T + 1).
Noting that 7 < T + 1 completes the proof.]

C. Asymptotic Calibration

The previous algorithm can also be used for (asymptotic)
calibration — meaning we can drive the calibration error to
0 for all (Lipschitz) continuous test functions. To see this,
just consider using a (countable) sequence of test functions
FY(), f2(-), ... (superscripts are used since these are not
functions of time) such that these test functions form a basis
for all (Lipschitz) continuous functions. Then just add in more
test functions (sufficiently slowly) such that the calibration
error is forced to O for an any of these basis functions.

IV. CALIBRATING ON SUBSEQUENCES

Now consider the case where at each time we receive binary
z; € {0,1}%. Let us examine how we can modify the online
regression algorithm such that the predictions are unbiased on
each of the subsequences ¢, where z; ; = 1, i.e.

T
Zl’t,i@t - yt)
t=1

This is the analogue of the normal equations (Equation 1)
in the online setting. This goal naturally generalizes to the
case where x; is non-binary. As discussed in the Introduction,
simply running an online linear regression algorithm (such
as Algorithm 1) is not sufficient to achieve this unbiased
condition.

However, the Calibrated Regression algorithm (Algo-
rithm 2) presents a simple fix, just add one more regression
variable, namely y. More formally, set f;o(:) = §: and set
ft,i(?jt) = Tt,i for i = 1, 2...d.

Note that for prediction the fixed point condition (without
the clipping) is just y; = 60 - f;(y:), which is equivalent to:

d
7= > i1 Vi
¢ 1— 6,

=o(T)

If this y; € [0, 1], then we predict with this value. Else, we
must chose either 0 or 1, whichever solves the fixed point
condition g; = clip(9 - f¢(:)).

This algorithm enjoys the following performance bound.

Corollary 4.1:: The Calibrated Regression algorithm, with

fro(@e) = ye and fi (7)) = x,; for i = 1,2...d, achieves
the following bound on the calibration error, for each 4

T

th,i@t - yt)

t=1

<2/(T; + 1)(d + 1) In(T + 1)

where T; is the total length of subsequence ¢, i.e. the number
of times z;,; = 1.

Proof: The proof follows by noting that for i # 0
T ~
Zt:lftz,i(yt) = Zt:lx?,i =Ti. u

Hence, this bound shows that we can simultaneously bound
the bias on all subsequences, such that the bias on each
subsequence grows as square root the number of times that
sequence was present.

A. Asymptotic Calibration on Subsequences

Now let us consider how to calibrate on each subsequence.
By this, we desire that, on each subsequence, we desire that the
calibration condition be satisfied for all (Lipschitz) continuous
test functions. Recall for obtaining calibration on one sequence
we considered using a (countable) sequence of test functions
(), f2(-), ... such that these test functions form a basis for
all continuous functions. Here, we consider d sequences, each
of the form @, f1(-), x1,i f2(*), As before, we slowly add
more of these test functions.

V. WHY NOT FOR THE IID CASE ALSO?

Using the strong similarity of the IID case to the individual
sequence case, we are lead to ask what would happen if we
added a ¢ to the right hand side of a regression problem.
But since this is a cross-sectional setting, the ¢ is always a
fixed linear combination of the other z’s. So it doesn’t change
the subspace spanned by the original list of x’s—it is already
there. One can think of this as being the reason that we get
the unbiased result of equation (1) for free.

But we also considered looking at higher powers of ¢. In the
IID case this can be thought of as estimating the link function
h, where Ey = h(f - x). A variant of this has been useful in
an applied setting, namely that of bankruptcy from credit card
data [Foster and Stine(2004)].

REFERENCES

[Azoury and Warmuth(2001)] K. S. Azoury and M. Warmuth. Relative loss
bounds for on-line density estimation with the exponential family of
distributions. Machine Learning, 43(3), 2001.

[Dawid(1984)] A. Dawid. Statistical theory: The prequential approach. J.
Royal Statistical Society, 1984.

[Foster(1991)] D. P. Foster. Prediction in the worst case. Annals of Statistics,
19, 1991.

[Foster and Stine(2004)] Dean P. Foster and Robert A. Stine. Variable
selection in data mining: Building a predictive model for bankruptcy.
JASA, 99:303-313, 2004.

[Foster and Vohra(1999)] Dean P. Foster and Rakesh V. Vohra. Regret in the
on-line decision problem. Games and Economic Behavior, pages 7 — 36,
1999.

[Kakade and Ng(2004)] S. M. Kakade and A. Y. Ng. Online bounds for
bayesian algorithms. Proceedings of Neural Information Processing
Systems, 2004.

[Kakade and Foster(2004)] Sham M. Kakade and Dean P. Foster. Determinis-
tic calibration and nash equilibrium. The Seventeenth Annual Conference
on Learning Theory (COLT), 2004.

[Vovk(2001)] V. Vovk. Competitive on-line statistics. International Statistical
Review, 69, 2001.

[Vovk(2005)] V. Vovk. Non-asymptotic calibration and resolution. Algorith-
mic Learning Theory, 16th International Conference, ALT 2005, 2005.

