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Abstract. In many reinforcement learning problems, it is appropriate
to optimize the average reward. In practice, this is often done by solving
the Bellman equations using a discount factor close to 1. In this paper, we
provide a bound on the average reward of the policy obtained by solving
the Bellman equations which depends on the relationship between the
discount factor and the mixing time of the Markov chain. We extend this
result to the direct policy gradient of Baxter and Bartlett, in which a
discount parameter is used to find a biased estimate of the gradient of
the average reward with respect to the parameters of a policy. We show
that this biased gradient is an exact gradient of a related discounted
problem and provide a bound on the optima found by following these
biased gradients of the average reward. Further, we show that the exact
Hessian in this related discounted problem is an approximate Hessian of
the average reward, with equality in the limit the discount factor tends to
1. We then provide an algorithm to estimate the Hessian from a sample
path of the underlying Markov chain, which converges with probability
1.

1 Introduction

Sequential decision making problems are usually formulated as dynamic pro-
gramming problems in which the agent must maximize some measure of future
reward. In many domains, it is appropriate to optimize the average reward. Of-
ten, discounted formulations with a discount factor v close to 1 are used as a
proxy to an average reward formulation. It is natural to inquire about the con-
sequences of using a discount factor close to one. How does the quality of the
policy, measured in an average reward sense, degrade as the discount factor is
reduced? What are the benefits in using a smaller discount factor?

This papers focuses on the former issue by extending the results of Baxter
and Bartlett[2,1]. A key relationship proved in [2] shows that the discounted
reward, scaled by 1 — «, is approximately the average reward, which suggests
that maximizing discounted reward will be approximately maximizing average



reward. We show if ﬁ is large compared to the mixing time of the Markov
chain, then we would expect any policy that solves the Bellman equations to
have a large average reward.

This interpretation of using discounted rewards to maximize average reward
extends to the case of maximizing the average reward by following a gradient. We
show that the approximate gradient of Baxter and Bartlett is an exact gradient
of a related discounted, start state problem and provide a similar bound on the
quality of the optima reached using this approximate gradient. These results
naturally lead to an algorithm for computing an approximation to the Hessian.
A slightly different, independent derivation of the Hessian is given in [3].

2 The Reinforcement Learning Problem

We consider the standard formulation of reinforcement learning, in which an
agent interacts with a finite Markov decision process (MDP). An MDP is a
tuple (S, A, R, P) where: S is finite set of states S = {1,...,n}, A is a finite set
of actions, R is a reward function R : S — [0, Ryez)t, and P is the transition
model in which p;;(u) is the probability of transitioning to state j from state ¢
under action u.2

The agent’s decision making procedure is characterized by a stochastic policy
u:S — A, where p, (i) is the probability of taking action u in state . For each
policy u there corresponds a Markov chain with a transition matrix P(u), where
[P(n))ij = >, Pij(u)py(i). We assume that these Markov chains satisfy the
following assumption:

Assumption 1. Each P(u) has a unique stationary distribution
() = [7(, 1), ..., 7w(u,n)]" satisfying:

m(w)' P(p) = 7(p)’
(where w(u)" denotes the transpose of w(u)).

The average reward is defined by:

W = Jm Y w ) B Y o = )

where 4, is the state at time ¢. The average reward can be shown to equal:

n(p) = w(w)'r

! It is a straightforward to extend these results to the case where the rewards are
dependent on the actions, R(s,a).

2 We ignore the start state distribution, since the average reward is independent of
the starting distribution under the current assumption of a unique stationary distri-
bution.



where r = [r(1),...,7(n)]' (see [4]). The goal of the agent is to find a policy p*
that returns the maximum average reward over all policies.
We define the vy-discounted reward from some starting state ¢ as:

Ty (1) = B> y'r(iy) lio = i}
t=0

where v € [0,1). These value functions satisfy the following consistency condition
[8]:
Iy () =71+ P (p)Jy (1) (1)

(again we use the vector notation J., (1) = [J, (i, 1), ..., Jy (1, m)]"). The expected
discounted reward is defined as 7(p)'J, (1), where the expectation is taken over
the stationary distribution . As shown in [6], the expected discounted reward is
just a multiple of the average reward:

oy = ) 9
w(u) 1y () = {2 )
Thus, optimizing the expected discounted reward for any v is equivalent to
optimizing the average reward. Also, for all states i, lim,_,; (1 —~)J, (i) =7 (see
[4]).
In discounted dynamic programming, we are concerned with finding a vector
J, € R™ that satisfies the Bellman equations:

7, = max(r + yP(u) ;) (3)

Let p7*be a policy such that J, (u7*) satisfies this equation (there could be more
than one such policy). Although the policy p”* simultaneously maximizes the
discounted reward starting from every state, it does not necessarily maximize
the average discounted reward, which is sensitive to the stationary distribution
achieved by this policy (see equation 2). The policies that solve the Bellman
equations could lead to poor stationary distributions that do not maximize the
average reward.

3 Appropriateness of Maximizing Discounted Reward

We extend the results of Baxter and Bartlett to show that if ﬁ is large com-
pared to the mixing time of the Markov chain of the optimal policy then the
solutions to the Bellman equations will have an average reward close to the
maximum average reward. We use the following relation (shown by Baxter and
Bartlett [2], modulo a typo), for any policy:

(19073 0) = (e S o) ding(0, s, TSy e ()

where e = [1,1,...,1]) and S(p) = (s152--- sp) is the matrix of right eigenvec-
tors of P(u) with the corresponding eigenvalues A1 (p) = 1 >| Az2(p)| > -+ >



[An(1)| (assuming that P(u) has n distinct eigenvalues). This equation follows
from separating J, = Y, v*P’r into the contribution associated with A\; =1
and that coming from the remaining eigenvalues. Note that for v near 1, the
scaled discounted value function for each state is approximately the average
reward, with an approximation error of order 1 — +.

Throughout the paper, ||A||2 denotes the spectral norm of a matrix A, defined
as [|Allz = max,,|s|=1 [|Az||, where||z|| denotes the Euclidean norm of x, and
k2(A) denotes the spectral condition number of a nonsingular matrix A, defined
as k2 (A) = [|Afl2)lA7 2.

Theorem 1. Let p"*be a policy such that J,(u"*) satisfies the Bellman equa-
tions (equation 3) and let p* be a policy such that n(u*) be the mazimum av-
erage reward over all policies. Assume P(u*) has n distinct eigenvalues. Let
S = (s182---8n) be the matriz of right eigenvectors of P(u*) with the corre-
sponding eigenvalues Ay =1 >| Ag| > --- > |An|. Then

11—y
Y* > *\ __ E——
1) 2 n(p") = r2(S)Irll 3 ol

Proof. Since J,(u7*) satisfies the Bellman equations, we have

Vi Jy(W7) > Iy (1)

where the vector inequality is shorthand for the respective component wise in-
equality. As a special case, the inequality holds for a policy p* that maximizes
the average reward, ie J, (u?*) > J,(p*). It follows from equation 2 and equation
4 (applied to p*) that

(™) = (L= y)m(u™) Iy (1)

> (1= )n() Ty(4")
* * * . 1_7 1_7 —1
=n(p*)m(p"*) e+ w(n*)'S diag(0, yeens Sty
(W) m(p™) (1) ( W 1_7“”')
* * . 1_7 1_7 -1
> n(p*) — |7 (™)' S diag(0, yeens S~
) = Imuy's diag0, y—pp o T

where we have used w(u"*)'e = 1. The dependence of S and A; on p* is sup-
pressed. Using the Cauchy-Schwartz inequality, we have

. 1—7v 1—x 4
7Y > p(p*) — ||S7 ()| ||diag(0, yenes S™'r
n(p™) 2 n(p") — [|S7 ()] [|diag( =] 1—7|>\n|) l
: I—n e 1
> n(p*) = ||Sx(u"™)|| ||diag(0, oo S| .
> n(p") = [[S7(p™)| ||diag( W 1—7|>\n|)”2” I

It is easy to show that ||diag(ds, ..., dn)||2 = max; |d;|. Using ||«|| < 1, it follows
from the definition of the spectral norm and spectral condition number that
[1Sm (™) IS Il < w2(S)lIrl- o



The previous theorem shows that if 1—+ is small compared to 1—|\z|, then the
solution to the Bellman equations will be close to the maximum average reward.
Under assumption 1, from any initial state, the distribution of states of the
Markov chain will converge at an exponential rate to the stationary distribution,
and the rate of this will depend on the eigenvalues of the transition matrix. The
second largest eigenvalue, |Az|, will determine an upper bound on this mixing
time.

4 Direct Gradient Methods

A promising recent approach to finding the gradient of the average reward was
presented by Baxter and Bartlett [2], where a discount parameter controls the
bias and variance of the gradient estimate (also see a related approach by Mar-
bach and Tsitsiklis [5]). We now relate this approximate gradient to an exact
gradient for a modified discounted problem and provide a bound on the quality
of the local optima reached by following this approximate gradient. To ensure the
existence of certain gradients and the boundedness of certain random variables,
we assume

Assumption 2. The derivatives, VP;; and V, (0,1), exist and the ratios, VP{,J;J'
and v““”(igai)i), are bounded by a constant for all § € R*.

Let § € R* be the parameters of a policy u(f) : S — A, where p,,(8,14) is the
chance of taking action u in state i. These parameters implicitly parameterize the
average reward, the stationary distribution, and the transition matrix, which we
denote by n(8), 7(6), and P(6). Also let J,(#) be the discounted value function
under P(#). The key result of Baxter and Bartlett shows that the exact gradient
of the average reward, Vn(6), can be approximated by

Vn(6) ~ ym(8)'VP(6)J,(6) = V,n(6)

where this approximation becomes exact as v — 1. We denote this approximate
gradient by V,7(8) (the tilde makes it explicitly clear that V., is not differenti-
ating with respect to ). Further, they give an algorithm that estimates V.,7(6)
from a sample trajectory.

Before we state our theorem, we define v (8, p) to be the expected discounted
reward received from a starting state chosen from the distribution p under P(6),
1e

vy (0,p) = p' J5(0) -

Theorem 2. Let v (0,7(0)) = (8)'J,(0). Then

where Vj is the gradient with respect to 6.



Proof. Tt follows from the fact that 7(6) is independent of 6 that
Vv (0, 7(8)) = m(8)'V5.1,(6)

(8)'Vy(r +~vP(9)J,(9))

m(8)'(V5P(0)J,(8) + vP()V;7,()) .

Using 7(6)' P(6) = (6,
Vvy(0,7(0))|5—g = 7(0)' VP(8).J,(6) + v (6)' P(6)V5.71(6) | 5_,

V() + v (6)'V ()| =0

V,n(0) + 1V, Vw(e 7(0))|5— -

Collecting terms proves equation 5. O

Note that the approximate gradient at 6, is equivalent to the exact gradi-
ent in a start state problem under the starting distribution 7(61), whereas the
approximate gradient at 62 is equivalent to the exact gradient in the start state
problem with a different starting distribution, w(62). If the approximate gradient
is 0 at some point 87* then this point will also be an extremum of the related
problem, which allows us to make the following statement. In the following theo-
rem, the basin of attraction of a maximum z of f(z) is the set of all points which
converge to z when taking infinitesimal steps in the direction of the gradient.

Theorem 3. Let 67* be a point such that Vv, (0,m(67*))|g=gr+ = 0. Assume
that this extremum is a local mazimum and let (2 be the basin of attraction
of this mazimum with respect to v, (0, 7(07*)). Let 8* € 2 such that n(6*) is
the mazimum average reward over all 6 in (2. Assume P(u*) has n distinct
eigenvectors. Let S = (s1s5---5,) be the matriz of right eigenvectors of P(6*)
with the corresponding eigenvalues Ay =1 >| Aa| > -++ > |A\,|. Then

I—v
7Y * * _ -
n(67") 2 n(0) = w2(S)lIrll; Wi

Proof. By assumption that this is a local maximum,
Vo € 2 w(67) J,(67*) > w(67*) T, (6) .

Let 6* be a point in {2 which returns (6*), the maximum average reward in (2.
As a special case, we have 7(07*)'J,(87*) > w(07*)'J,(6*). Using equation 2,

n(@™) = (L—7)w(6™)' 1, (6")
> (1—7)m(67)' 1, (6%) .

The remainder of the argument parallels the proof given in Theorem 1. O

The previous theorem gives a constraint on the quality of the maximum
reached if and when the approximate gradient ascent converges. Note that this
bound is essentially identical to the bound on the average reward of the policy
obtained by solving the Bellman equations.



5 Direct Hessian Methods

Theorem 2 suggests that the natural choice for an approximate Hessian is (1 —
Y)V20,(8,7(0))]5_p. We define

Vin(8) = (1= 7) Vv, (6,7(6)) 5, -
We make the following assumption.

2 ..
Assumption 3. The Hessians, V2P;; and V1, (0,1), exist and the ratios, VP?”
ij

and v::%(aisi)’ are bounded by a constant for all § € R*.

Theorem 4. For all § € R,

V2 (6) = lim V2n(6) .

y—1

Proof. Let O = B%k. Using equation 2 and suppressing the 6 dependence,

lim [V20(0)]mn = lim (1 — )80 0p (7' J,)
y—1 y—1
= liml(l — N ([OmOnm'] Ty + [Om ™[O0 Ty] + [On7'|[Om 4]
Y=
+7' [0 On Ty ])
=1(0)0,0n7'e + 0nnOmn'e + OnOpm'e + 1i_>ml(1 — )7 01O Jy
8!
_ —
= '11—>rnl(1 v)m™ OmOnJy
where we have used lim,_,;(1 —7)J, = ne (see [4]), limy_,1(1 — 7)OkJy = Okne

(which is straightforward to prove), and dy7'e = 91 = 0. Following from the
definition of vy, [V2u,(60,7(8))[j—glmn = 7(6)'[V2 T (8)]mn- O

The previous theorem shows that in the limit as v tends to 1 the exact
Hessian in the start state problem is the Hessian of the average reward. The
following theorem gives an expression for @277;(0), which we later show how to
estimate from Monte-Carlo samples.

Theorem 5. For all § and v € [0,1),
[6in(6)]mn = 7' ([0mOn Pl Jy + [0mP[0nJ5] + [0n P][Om ) (6)

where

Oy = Y [PT'VPI; . (7)

t=1




Algorithm 1: HMDP (Hessian for a Markov Decision Process)

1. Obtain an arbitrary state o

2. SetZ():Ao:OE%k and set EOZyOZHOZOG%kXRk

3. fort=0tot=T—-1do

Generate control u; according to p, (0, z+)

Observe 7(z1+1) and xt+1(generated according to Pr,z,, ; (ut))

_ Vi, (6,24) Vb, (6,24)'
Yorr = v + TGy A b A e )

® N o gt

auy (6,
ziy1 = Y(ze + Vui i(é ;j;))
~ ~ v2 uy (6,
Zev1 = v(Z + “: (tg(mtm)t))

9. A1 = A+ r(Teg1)ze41
10. Hitq = Hy + r(xe41) Ze41 + 7(Te41) Y41
11. end for
12. gradient Ay < Ar/T
13. Hessian Hr < Hr/T

Proof. Suppressing the 8 dependence where it is clear,

[V50(8,7(8)) 5—glmn = 7(8)' V3 J5(8) 5_glmn
= (0 '[VZ(T+7P(0)J (O)l5=glmn

—’y7r'6 OnPJy + 0 POy Jy + 0, PO Jy)
+7[V§~V7(0,7r( Nls=plmn

)
)
V7' (0,0 Py + 8y POpJy + 8, POy J + POy, 0nJ)
(

where we have used the stationarity of 7' in the last line. Collecting terms proves

equation 6. Using equation 1,

VJ, =V(r+~PJ,)
=9VPJ, +vyPVJ,.

Equation 7 follows from unrolling the previous equation (see [7] for an equivalent

proof of equation 7)

_Algorithm 1 introduces HMDP, which estimates the approximate Hessian
V?Yn from a single sample path. It also includes the gradient algorithm of Baxter
and Bartlett (with an additional factor of v that [2] ignores). We outline the

proof out its asymptotic correctness.

Theorem 6. The HMUDP sequence {Hr} has the following property:

. w2
i Hr = V2



Proof. The first term in equation 6, yn'V2PJ,, is estimated in the algorithm by
LS Tt i (it). The proof of the asymptotic correctness of this term parallels
the proof in [2] that %ZtT:_Ol zr(i¢) is an asymptotically correct estimate of
yn'VPJ, (see Algorithm 1 for definitions of Z; and z;).

We can write the other terms of equation 6 as

Om b (0,9)

'O PO,y = i (W) (8,
ym 7 D m(@)ps () DT

iyJhu

OnJ (0 7)

where we have used 0, P; = ), pij(u)pu(6, 1)8’;”+0(2)’) Let zg,21,... be a
sample trajectory corresponding to our Markov chain with zg chosen from the
stationary distribution, which implies z; is also a sample from the stationary
distribution. Let wg,u1,... be the corresponding actions. Thus, 7%
OnJ(6,z¢41) is an unbiased estimate of y7'Op, POy, J, for any t. t

As shown in [7] (also see equation 7),

Oy (0:2041) = Y D VT P(Xy =il Xpgr = 2041)pis ()

i,j,u T=t+1

qu(e,i)%e(%;)Jw(aaj)

where X is a random variable for the state of the system at time 7. For any ¢,
Yo YT ta::”zio(awf)’)(] (z;41) is an unbiased estimate of 8,Jy (6, z¢41).
It follows from the Markov property that for any t,

Om (0,.’1),5) .- —t On i, (6, 27)
mre 2l T =", (0,2,
w070 22 T Ban D)

is an unbiased sample of yz'0,, PO, J,. Since each z; is a sample from the sta-
tionary distribution, the average

Y~ m,uut (6,z) .- —t On i, (6, 27)
A Tt T (0, %
T ZO llfut 0 mt) zt;l’y L. (07337_) ’Y( +1)

almost surely converges to y@'0p, POpJ, as T — oo. The previous expression
depends on the exact values of J, (6, z;), which are not known. However, each
Jy (8, z¢) can be estimated from the sample trajectory, and it is straightforward
to show that

7 mlflui 0 .’L't i T tan,u/u.,. 6 -777' Z —r—1 ~) (8)
tO 'u“fawt Tt+1fy fru, (0, 27) d e

almost surely converges to yn'0p PO, J, as T — oo. Using the ergodic theorem,
the assumption that z¢ is chosen according to the stationary distribution can be



relaxed to zg is an arbitrary state, since { X} is asymptotically stationary (under
assumption 1). Hence, equation 8 almost surely converges to ym'Op POy J, for
any start state xq.

Unrolling the equations for Hy in the HMDP shows that

0, 2;) — Ontta, (6, 77)
7 ml"’ut t Z ’)’T t n/J/UT 7' Z "Y —T— 'I“IL';—)

T= bl o (0,31) T=t+1 . (0,05) F=7+1

is the estimate for yn'0p POy J,. It is straightforward to show that the error
between the previous equation and equation 8 goes to 0 as T' — oo. O

6 Discussion

Equation 4 suggests that the discount factor can be seen as introducing a bias-
variance trade off. This equation shows that the scaled value function for ev-
ery state is approximately the average reward, with an approximation error of
O(1—7y). Crudely, the variance of Monte-Carlo samples of the value function for
each state is 1%, since this is the horizon time over which rewards are added.
Solving the Bellman equations will be simultaneously maximizing each biased
estimate J,, (i1,%) = n(u). We used the error in this approximation to bound the
quality, measured by the average reward, of the policy obtained by solving the
Bellman equations. This bound shows that good policies can be obtained if %
is sufficiently larger than the mixing time of the Markov chain. This bound does
not answer the question of which value of v < 1 is large enough such that the
policy that solves the Bellman equations is the optimal policy. This stems from
using the worst case scenario for the error of the average reward approximation
when deriving our bound, in which the stationary distribution is parallel to the
second term in equation 4.

The idea of approximately maximizing the average reward using discounted
rewards carries over to gradient methods. We have shown that Baxter and
Bartlett’s approximation to the gradient of the average reward is an exact gra-
dient of a related discounted start state problem, and proved a similar bound on
the quality of policies obtained by following this biased gradient. In [1], Bartlett
and Baxter show that the bias of this approximate gradient is O(1 —+) and the
variance is O(125).

Some average reward formulations exist and are essentially identical to dis-
counted formulations with a discount factor sufficiently close to 1. Tsitsiklis and
Van Roy [10] show that average reward temporal differencing (TD) (see [9]),
with a discount factor sufficiently close to 1, is identical to discounted TD given
appropriate learning rates and biases — converging to the same limit with the
same transient behavior. An equivalent expression to the approximate gradient
in the limit as v — 1 is given by Sutton et al’s exact average reward gradient [7],
which uses a reinforcement comparison term to obtain finite state-action values.

We have also presented an algorithm (HMDP) for computing arbitrarily ac-
curate approximations to the Hessian from a single sample path. As suggested



by [2], extensions include modifying the algorithm to compute the Hessian in a
Partially Observable Markov Decision Process and in continuous state, action,
and control spaces. Experimental and theoretical results are needed to better
understand the approximation and estimation error of HMDP.

Acknowledgments

We thank Peter Dayan for discussions and comments on the paper. Funding is
from the NSF and the Gatsby Charitable Foundation.

References

1.

10.

P. Bartlett and J. Baxter. Estimation and approximation bounds for gradient-
based reinforcement learning. Technical report, Australian National University,
2000.

J. Baxter and P. Bartlett. Direct gradient-based reinforcement learning. Technical
report, Australian National University, Research School of Information Sciences
and Engineering, July 1999.

J. Baxter and P. Bartlett. Algorithms for infinite-horizon policy-gradient estima-
tion. Journal of Artificial Intelligence Research, 2001. (forthcoming).

D. P. Bertsekas. Dynamic Programming and Optimal Control, Volumes 1 and 2.
Athena Scientific, 1995.

P. Marbach and J. Tsitsiklis. Simulation-based optimization of markov reward
processes. Technical report, Massachusetts Institute of Technology, 1998.

S. Singh, T. Jaakkola, and M. I. Jordan. Learning without state-estimation in
partially observable markovian decision processes. Proc. 11th International Con-
ference on Machine Learning, 1994.

R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. Neural Information Process-
ing Systems, 13, 2000.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

John N. Tsitsiklis and Benjamin Van Roy. Average cost temporal-difference learn-
ing. Automatica, 35:319-349, 1999.

John N. Tsitsiklis and Benjamin Van Roy. On average versus discounted reward
temporal-difference learning. Machine Learning, 2001. (forthcoming).



