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Abstract

We consider an MDP setting in which the reward function isvaéid to

change during each time step of play (possibly in an advietisaanner),

yet the dynamics remain fixed. Similar to the experts settirgaddress
the question of how well can an agent do when compared to terde
achieved under the best stationary policy over time. Weideoefficient

algorithms, which have regret bounds with dependencen the size of
state space. Instead, these bounds depend only on a cent&iorhtime

of the process and logarithmically on the number of actiov&e also

show that in the case that the dynamics change over time,rtidem

becomes computationally hard.

1 Introduction

There is an inherent tension between the objectives in aeregptting and those in a re-
inforcement learning setting. In the experts problem,mygvery round a learner chooses
one ofn decision making experts and incurs the loss of the choseerexphe setting is
typically an adversarial one, where Nature provides thengpes to a learner. The stan-
dard objective here is a myopic, backwards looking one —tirospect, we desire that our
performance is not much worse than had we chosersamgfe expert on the sequence of
examples provided by Nature. In contrast, a reinforcenearing setting typically makes
the much stronger assumption of a fixed environment, tylpiGaMarkov decision pro-
cess (MDP), and the forward looking objective is to maxinseene measure of the future
reward with respect to this fixed environment.

The motivation of this work is to understand howefficientlyincorporate the benefits of
existing experts algorithms into a more adversarial reoggment learning setting, where
certain aspects of the environment could change over timeai¥e way to implement an
experts algorithm is to simply associate an expert with diaeld policy. The running time
of such algorithms is polynomial in the number of experts trelregret (the difference
from the optimal reward) is logarithmic in the number of estpeFor our setting the num-
ber of policies is huge, namelgactiong’s®®S which renders the naive experts approach
computationally infeasible.

Furthermore, straightforward applications of standarmgre® algorithms produce regret
bounds which are logarithmic in the number of policies, sgythave linear dependence
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on the number of states. We might hope for a more effectiveetdgpund which hago
dependencen the size of state space (which is typically large).

The setting we consider is one in which the dynamics of thérenment are known to
the learner, but the reward function can change over timea$8ame that after each time
step the learner has complete knowledge of the previousdefwactions (over the entire
environment), but does not know the future reward functions

As a motivating example one can consider taking a long rdadsvver some period of
time T. The dynamics, namely the roads, are fixed, but the road tonsimay change
frequently. By listening to the radio, one can get (effeddijy instant updates of the road
and traffic conditions. Here, the task is to minimize the chsing the period of timd".
Note that at each time step we select one road segment, auféztain delay, and need to
plan ahead with respect to our current position.

This example is similar to an adversarial shortest pathlpmlzonsidered in Kalai and
Vempala [2003]. In fact Kalai and Vempala [2003], addregsabmputational difficulty of
handling a large number of experts under certain linearnagsans on the reward func-
tions. However, their algorithm is not directly applicalbdeour setting, due to the fact that
in our setting, decisions must be made with respect tactieent state of the agent (and
the reward could be changing frequently), while in theitisgtthe decisions are only made
with respect to a single state.

McMabhan et al. [2003] also considered a similar setting —y #leo assume that the reward
function is chosen by an adversary and that the dynamicsxae fHowever, they assume
that the cost functions come from a finite set (but are notrebbée) and the goal is to find
a min-max solution for the related stochastic game.

In this work, we provideefficientways to incorporate existing best experts algorithms into
the MDP setting. Furthermore, our loss bounds (compardtetbeést constant policy) have
no dependencen the number of states and depend only on on a certain haiipenof

the environment anlbg (#actions). There are two sensible extensions of our setting. The
first is where we allow Nature to change the dynamics of th&@mment over time. Here,
we show that it becomes NP-Hard to develop a low regret dlyarieven for oblivious
adversary. The second extension is to consider one in whielagent only observes the
rewards for the states it actually visits (a generalizatibthe multi-arm bandits problem).
We leave this interesting direction for future work.

2 The Setting

We consider an MDP with state spa€ginitial state distributiond; over.S; action space
A; state transition probabilitie§Ps,(-)} (here, Ps, is the next-state distribution on tak-
ing actiona in states); and a sequence of reward functionsrs, . . . rr, wherer, is the
(bounded) reward function at time stemappingS x A into [0, 1].

The goal is to maximize the sum of undiscounted rewards o¥estap horizon. We assume
the agent has complete knowledge of the transition méydlut at timet, the agent only
knows the past reward functions, 5, ...r,_1. Hence, an algorithml is a mapping from
S and the previous reward functions, . .. r;_; to a probability distribution over actions,
so.A(als,r,...r4—1) is the probability of taking action at timet.

We define the return of an algorithi as:

1
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wherea; ~ A(alst, r1,...7—1) ands, is the random variable which represents the state



at timet, starting from initial states; ~ d; and following actionsuy, as,...a;_1. Note
that we keep track of the expectation and not of a specifiedtajy (and our algorithm
specifies a distribution over actionseaerystate and agverytime stepr).

Ideally, we would like to find apd which achieves a large rewa¥gl, . .. (A) regardlesof
how the adversary chooses the reward functions. In genbislpf course is not possible,
and, as in the standard experts setting, we desire that garithim competes favorably
against the best fixed stationary polieyu|s) in hindsight.

3 An MDP Experts Algorithm

3.1 Preliminaries

Before we provide our algorithm a few definitions are in ordeor every stationary pol-
icy w(als), we defineP™ to be the transition matrix induced by where the component
[P™]s,s Is the transition probability froms to s’ underr. Also, defined, ; to be the state
distribution at time when followingr, ie

dry = di(PT)*
where we are treating, as a row vector here.

Assumption 1 (Mixing) We assume the transition model over states, asméated by,
has a well defined stationary distribution, which we c&ll. More formally, for every
initial states, d. ; converges ta. ast tends to infinity and, P™ = d.. Furthermore, this
implies there exists somesuch that forall policiesw, and distributionsi andd’,

ldP™ —d' Py < e V/7||d ~ d'||x

where||z||; denotes thé norm of a vector:. We refer tor as themixing timeand assume
that > 1.

The parameter provides a bound on the planning horizon timescale, siniceglies that
everypolicy achieves close to its average rewardtr) steps'. This parameter also
governs how long it effectively takes to switch from one pyplio another (after timé& ()
steps there is little information in the state distributadrout the previous policy).

This assumption allows us to define the average reward afypolin an MDP with reward
functionr as:

() = Egnd, armn(als)[r(5,a)]
and the value@). ,-(s, a), is defined as

Qrr(s,a) =E Z (r(s¢,ar) —ne(m)) |s1 = s,a1 = a,w]
t=1

where ands; anda; are the state and actions at timeafter starting from state; = s
then deviating with an immediate action@f = « and followingw onwards. We slightly
abuse notation by writin@). (s, ') = Eyr/(als)[Qr.r(s,a)]. These values satisfy the
well known recurrence equation;

Qnr(s,a) =71(s,a) = n(m) + By p,, [Qr (s, 7)) @
whereQ,(s', 7) is the next state value (without deviation).

LI this timescale is unreasonably large for some specific MDP, then arld adificially impose
some horizon time and attempt to compete with those policies which mix in thisonatiime, as
done Kearns and Singh [1998].



If 7* is an optimal policy (with respect tg.), then, as usual, we defirg* (s, a) to be the
value of the optimal policyie Q% (s, a) = Qx+ »(s,a).

We now provide two useful lemmas. It is straightforward te #eat the previous assump-
tion implies a rate of convergence to the stationary distiiim that isO(r), for all policies.
The following lemma states this more precisely.

Lemma 2 For all policies,

d .t — dr]l1 < 277
Proof. Sincer is stationary, we havé, P™ = d,, and so
ldnt — drllt = lldrt—1P™ — de P |1 < ||drp—1 — dnllre™ /"

which implies||d,: — dx|l1 < ||d1 — dﬂ\\le*t/f. The claim now follows since, for all
distributionsd andd’, ||d — d’|; < 2. O

The following derives a bound on tlig values as a function of the mixing time.
Lemma 3 For all reward functions-, Q (s, a) < 37 .

Proof. First, let us bound). (s, 7), wherer is used on the first step. For &llincluding
t =1, letd, s: be the state distribution at timestarting from states and following .
Hence, we have

Qw,r(sﬂr) = Z (Eslwdﬂ,s,tya’\’ﬂ-[r(sl7a)] - nr(ﬂ')))

t=1

[M]8

(Bt aerlr(s )] = ) 26717
t=1

o o)
= 226715/7' < / 2"t =27
t=1 0

Using the recurrence relation for the values, we kr@w, (s, a) could be at most more
than the above. The result follows sinte- 27 < 37 ]

3.2 TheAlgorithm

Now we provide our main result showing how to use any genegqpers algorithm in our
setting. We associate each state with an experts algoréhchthe expert for each state
is responsible for choosing the actions at that state. Timeeidiate question is what loss
function should we feed to each expert. It turns Qut ., is appropriate. We now assume
that our experts algorithm achieves a performance comfgat@althe best constant action.

Assumption 4 (Black Box Experts) We assume access to an optimized best eigo-
rithm which guarantees that for any sequence of loss funstg, cs, . . . ¢z over actions
A, the algorithm selects a distributioqy over A (using only the previous loss functions
c1,Ca, . .. ci—1) Such that

T T
ZECLNQt [ct<a)] S th(a’) + M V TlOg |A|7

where|jc,(a)|| < M. Furthermore, we also assume that decision distributioosndt
change quickly:
log | 4]

llae — qes1lr < —



These assumptions are satisfied by the multiplicative vigiglgorithms. For instance, the
algorithm in Freund and Schapire [1999] is such that the &ohedecision, | log ¢:(a) —

log ¢:+1(a)| changes by)(4/ log Lz ]4]y 'which implies the weakes condition above.

In our setting, we have an experts algorithm associatedevighnystates, which is fed the
loss functionQ@-, ., (s, -) at timet. The above assumption then guarantees that at every
states for every actioru we have that

T
Zth s,m) < Z o (5,0) + 37/Tlog 4]

since the loss functlo@m,n is bounded by, and that

log |A
meCls) — meaa (o)l < /2214

As we shall see, it is important that this 'slow change’ cdiodi be satisfied. Intuitively,
our experts algorithms will be using a similar policy formificantly long periods of time.

Also note that since the experts algorithms are associaitbdeach state and each of the
N experts chooses decisions outdfictions, the algorithm is efficient (polynomial i¥i
and A, assuming that that the black box uses a reasonable exfzgtittan).

We now state our main theorem.

Theorem 5 Let A be the MDP experts algorithm. Then for all reward functions
ry, 72, ... and for all stationary policiesr,

loglA] 4 [loglA| _4r

‘/7‘17’7"27...7’"1" (-A) Z ‘/7‘17’7"27...’7"’1" (77) - 87-2

As expected, the regret goes(at the rateO(1/+/T), as is the case with experts algo-
rithms. Importantly, note that the bound doex dependn the size of the state space.

3.3 TheAnalysis

The analysis is naturally divided into two parts. First, walgze the performance of the
algorithm in an idealized setting, where the algorithmansaneously obtains the average
reward of its current policy at each step. Then we take intmawt the slow change of the
policies to show that the actual performance is similar &itistantaneous performance.

An ldealized Setting: Let us examine the case in which at each timehen the algo-
rithm usesr;, it immediately obtains rewargl., (7;). The following theorem compares the
performance of our algorithms to that of a fixed constantgyah this setting.

Theorem 6 For all sequences,, s, ..., the MDP experts algorithm have the following
performance bound. For aft,

T T
S e (1) > >, (1) = 37y/Tlog [A]
t=1 t=1

wherer, 7a, . .. w7 IS the sequence of policies generateddin response teq, ro, ... 7.
Next we provide a technical lemma, which is a variant of altésiKakade [2003]

Lemma 7 For all policiesw and~’,

777'(77/) - 777-(”) = ESNd,r/ [Qﬂ'ﬂ'(sa 77/) - QTr,’r(Sv 77)]



Proof. Note that by definition of stationarity, if the state distrilon is atd,, then the
next state distribution is als,. if 7’ is followed. More formally, ifs ~ d./, a ~ 7’(a|s),
ands’ ~ Py, thens’ ~ d ... Using this and equation 1, we have:

Esna, [Qrr(s,7)] = Eand,ann[Qr (s, a)]
= Esua, arr[7(8,a) = () + Egr b, [Qr (7, )]
= Esd,ann[r(s,a) =0 (m)] + Esva,, [Qn (s, )]
= (7)) = (1) + Egna,, [Qr (s, 7))

Rearranging terms leads to the result. a

The lemma shows why our choice to feed each experts algofdthm, was appropriate.
Now we complete the proof of the above theorem.

Proof. Using the assumed regret in assumption 4,

T T T
S (m) =Y (1) = > B, [Qur (8.7) = Qo (5,70)]
t=1 t=1

t=1
T
EsNdﬂ' [ZQ‘M#} (Sa 71—) - Qﬂ't,n (S, 7rt)]

Esa, [37V/T log A]
3t/ T log A

where we used the fact thédt does not depend on the time in the second step. O

Taking Mixing Into Account: This subsection relates the valuéso the sums of average
reward used in the idealized setting.

Theorem 8 For all sequences,, s, ... and for all A

log|A| 27
T + T

T
1
“/7“1,7’2,-~T’T (A) - T ant (ﬂ—t)‘ < 47_2
t=1
wherer, 7a, . .. w7 IS the sequence of policies generateddin response teq, ro, . . . r7.

Since the above holds for all (including those4 which are the constant policy), then
combining this with Theorem 6 (once witd and once withr) completes the proof of
Theorem 5. We now prove the above.

The following simple lemma is useful and we omit the proofshbws how close are the
next state distributions when following rather thanr;, ;.

Lemma9 Letw andn’ be such thaljz(-|s)—='(-|s)||1 < e. Then for any state distribution
d, we have|dP™ — dP™ ||, < e.

Analogous to the definition af ;, we defined 4 ;
dae = Prs; = sldy, Al
which is the probability that the state at timhs s given thatA has been followed.

Lemma 10 Letnw, o, ... be the sequence of policies generated4in response to
r1,T9,...77. We have

/log |A
Hd.A,t_del §27_2 Og‘ |+2 —t/T



Proof. Letk < ¢. Using our experts assumption, it is straightforward totke¢ that the

change in the policy ovet steps igmy(-|s) — m:(-|s)]1 < (t — k)+/log|A|/t. Using this
with d 4 = da k—1P(m) andd,, P™ = d,, we have

Hd.A,k - dﬂ'tHl = ||dv4.,l€—lf)ﬂ-)C - dTQHl

< |ldag—1P™ —dr, |1 + [|[dag—1P™ —dar—1P" |
< dag 1P — g, Py +2(t — k)+/log [T
< eV dag —du, |+ 20t — k) /o8 AT

where we have used the last lemma in the third step and ouraotion assumption 1 in
the second to last step. Recursing on the above equation tead

ldas = dr |l < 2V/log|A]/ Z TR e T dy = d |
< 24/log |A|/tZ ke F/T 4 27T
k=1
The sum is bounded by an integral frénto oo, which evaluates to?. ]

We are now ready to complete the proof of Theorem 8.
Proof. By definition of V,

T
1
Viirayre(A) = fZESNdA,taaNWt[rt(‘S?a)]

- ZESN% amm, T2 (8, )] Z lda: — dx, |1

f 1

T T
1 1 [log |A
fznrf(ﬂ—t)+fz< 0g| |+2 t/‘l’)
t=1 t=1

T
1 log |A] 27
< = - 472 —
< T;nt(mw N+ T
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where we have bounded the sums by integration in the secolagttetep. A symmetric
argument leads to the result. O

4 A MoreAdversarial Setting

In this section we explore a different setting, tf@nging dynamics moddHere, in each
timestept, an oblivious adversary is allowed to choose both the reviandtion r, and
the transition modeP, — the model that determines the transitions to be used astepe

t. After each timestep, the agent receives complete knowleddothr; and P,. Fur-
thermore, we assume thgt is deterministic, so we do not concern ourselves with mixing
issues. In this setting, we have the following hardnesdtiéale let R; (M) be the optimal
average reward obtained by a stationary policy for tife§.

Theorem 11 In the changing dynamics model, if there exists a polynotaé online
algorithm (polynomial in the problem parameters) such tf@tany MDP, has an expected
average reward larger thaf0.875 + ¢) Ry (M), for somes > 0 andt, thenP = N P.



The following lemma is useful in the proof and uses the faat this hard to approximate
MAXS3SAT within any factor better thaf.875 (Hastad [2001]).

Lemma 12 Computing a stationary policy in the changing dynamics rhadih average
reward larger than(0.875 + ) R* (M), for somes > 0, is NP-Hard.

Proof: We prove it by reduction from 3-SAT. Suppose that the 3-SATida, ¢ hasm
clauses(C1,...,C,,, andn literals, z4,...,z, then we reduce it to MDP wit + 1
statessy, . . . Sn, Snt1, tWO actions in each state, 1 and fixed dynamic foBm steps which
will be described later. We prove that a policy with averageardp/3 translates to an
assignment that satisfigsfraction of ¢ and vice versa. Next we describe the dynamics.
Suppose that' is (z1 V —x2 Var) andCy is (x4 V —z1 V7). The initial state is; and the
reward for actior) is 0 and the agent moves to statg for action1 the reward isl and it
moves to state,, 1. In the second timestep the rewardsin, ; is 0 for every action and the
agents stay in it; in state if the agent performs actiaihthen it obtains reward and move

to states,, 11 otherwise it obtains rewar@ and moves to state;. In the next timestep the
reward ins, 1 is 0 for every action and the agents moves:tg the reward ins; is 1 for
action1 and zero for actiof and moves ta, for both actions. The rest of the construction
is done identically. Note that time inteni@l(¢ — 1) + 1, 3¢] corresponds t¢’; and that the
reward obtained in this interval is at mdstWe note that) has an assignment, ..., y,
wherey; = {0, 1} that satisfiep fraction of it, if and only ifr which takes actiony; in s;
has average rewaggd 3. We prove it by looking on each interval separately and mptiat

if a rewardl is obtained then there is an actiethat we take in one of the states which has
reward1 but this action corresponds to a satisfying assignmentisrdause. |

We are now ready to prove Theorem 11.

Proof: In this proof we make few changes from the construction gimdremma 12. We
allow the same clause to repeat few times, and its dynamécdescribed im steps and
not in 3 steps, where in thé step we move froms;, to s;,; and obtaing) reward, unless
the action "satisfies” the chosen clause, if it satisfies therobtain an immediate reward
1, move tos, 1 and stay there fon — k — 1 steps. Aftem steps the adversary chooses
uniformly at random the next clause. In the analysis we défiee steps related to a clause
as an iteration. The strategy defined by the algorithm attheration is the probability
assigned to actiofi/1 at states, just before arriving tas,. Note that the strategy at each
iteration is actually a stationary policy fdi. Thus the strategy in each iteration defines
an assignment for the formula. We also note that before aative the expected reward
of the optimal stationary policy in the iteration/g (nm), wherek is the maximal number
of satisfiable clauses and there aseclauses, and we havg[R*(M)] = k/(nm). If we
choose at random an iteration, then the strategy definechinitdration has an expected
reward which is larger tha(0.875 + ¢) R*(M), which implies that we can satisfy more
than0.875 fraction of satisfiable clauses, but this is impossible sse = N P. O
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