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Abstract
We present metric-

���
, a provably near-optimal

algorithm for reinforcement learning in Markov
decision processes in which there is a natural
metric on the state space that allows the construc-
tion of accurate local models. The algorithm is
a generalization of the

���
algorithm of Kearns

and Singh, and assumes a black box for approx-
imate planning. Unlike the original

���
, metric-���

finds a near optimal policy in an amount of
time that does not directly depend on the size of
the state space, but instead depends on the cov-
ering number of the state space. Informally, the
covering number is the number of neighborhoods
required for accurate local modeling.

1 Introduction, Motivation, and Background

Recent years have seen the introduction and study of a
number of representational approaches to Markov Decision
Processes (MDPs) with very large or infinite state spaces.
These include the broad family known as function approxi-
mation, in which a parametric functional form is used to ap-
proximate value functions, and direct models of the under-
lying dynamics and rewards, such as factored or Dynamic
Bayes Net (DBN) MDPs. For each of these approaches,
there are now at least plausible heuristics, and sometimes
formal analysis, for problems of planning [2] and learning.

Less studied and more elusive has been the problem
of global exploration, or managing the exploration-
exploitation trade-off. Here the goal is to learn a (glob-
ally) near-optimal � -step policy in an amount of time
that has no direct dependence on the state space size,
but only on the complexity of the chosen representation.
Global exploration was first solved in the deterministic

finite-state setting [9, 10] and then progress slowed. It
is only recently that provably correct and efficient al-
gorithms for exploration in small nondeterministic state
spaces became known (such as the

���
algorithm[4] and

its generalizations[5]). This approach has been generalized
to factored MDPs under certain assumptions [3], but there
remain many unresolved questions regarding efficient ex-
ploration in large MDPs, including whether model-based
approaches are required 1.

In general, it is intuitively clear that any general exploration
algorithm has a polynomial dependence on the size of the
state (see [7] for a more formal statement). Hence, to obtain
near-optimal algorithms with sub-linear dependence on the
size of the state-space further assumptions and restrictions
on the MDP must be made. The factored

� �
algorithm [3]

considers one restriction where the MDP are represented in
terms of a factored graph (ie a dynamic Bayes net). Here,
the number of steps the agent must act in the MDP in order
to obtain a � -step near optimal policy is polynomial in the
representation size of the factored graph.

In this work, we examine the problem of exploration in en-
vironments in which there is a metric on state-action pairs
with the property that “nearby” state-actions can be useful
in predicting state-action dynamics. Such conditions are
common for navigation or control problems, but may be
more broadly applicable as well. Given sufficient “nearby”
experience to predict outcomes, we have an implicit non-
parametric model of the dynamics in a neighborhood of the

1Recent work on gradient methods for approximate planning
([14, 1]) do not address exploration in the strong sense of in-
terest here, but instead examines convergence to policies which
small amounts of random exploration cannot improve (local opti-
mality). In general, effective exploration may require the careful
planning of a long sequence of steps that might never be encoun-
tered by a random walk. See [8] for a further discussion.



state-action space. These implicit models can be “pieced
together” and used for planning on a subset of the global
space.

One natural approach in the large-state space setting is ag-
gregate state methods which group states together and as-
sume Markov dynamics on these aggregate states [12, 13].
Clearly, this approach is useful only if a compatible set of
aggregate states can be found which preserve the Markov
dynamics on these aggregate states and where the size the
aggregate state space is considerably smaller than that of
the underlying state space. A benefit of this approach is
that planning under this model can be done with traditional
dynamic programming approaches on the aggregate states.
Unfortunately, in many navigation domains, it appears that
nontrivial state aggregation often destroys the Markov as-
sumption required for planning in aggregate state methods
(and we provide one such example later).

The local modeling assumption is not equivalent to an ag-
gregate state method since we do not group any states to-
gether and do not assume a Markov property holds for ag-
gregate states. In fact, under this assumption (as in factored���

), the size of the state space is not diminished in any real
way, unlike in aggregate state methods. Hence, the com-
putational problem of planning is still with us strongly. As
with factored

� �
, we assume a “black box” planning algo-

rithm to abstract away the difficulty of planning from that
of exploration. This assumption is not meant to trivialize
the planning problem, but is made in order to isolate and
quantify the difficulty of exploration.

Given the ability to plan, we prove that the local modeling
assumption implies the time required for global exploration
depends only on the metric resolution and not on the size
of the state space. More precisely, we give a generalization
of the

���
algorithm for metric MDPs which learns a (glob-

ally) approximately optimal � -step policy in time depend-
ing only on the covering numbers, a natural and standard
notion of the resolution required for local modeling under
the metric.

Metric MDPs are a natural complement to more direct
parametric assumptions on value functions and dynam-
ics. These results provide evidence that, as for fac-
tored environments[3], effective exploration mechanisms
are available for metric MDPs.

2 Definitions and Assumptions
We work in the standard MDP setting. Let ��������� 	�
���
be the probability of a state � � given an action 	 and
state � . Let ������ be the reward received in state � .
For simplicity, assume that all rewards are determinis-
tic and fall in the interval � ��
���� . Define ��������
��� ��"!$#&%(' #*)(',+,+,+ #.-�/�0213' #4' �65798 7:<; 5 ����� :  to be the average re-
ward received over � steps starting from state � while act-
ing under � in MDP = .

We first formalize the assumption that there is a no-
tion of distance that permits local modeling of dynam-
ics. Thus, let >��&������
?	3�$�
@���A
�	B& measure the “distance” be-
tween two state-action pairs. The results require that this
metric obey >��&���C
�	3�
@���A
�	B&9DE� for all ���A
�	B , and sym-
metry (i.e., >��&���C
�	3�
@���F��
?	3�G&HDI>��&���F��
�	3�$�
@���C
�	3? for all���C
?	B(
F��� � 
?	 �  ), but they do not require the triangle inequal-
ity. This is fortunate since demanding the triangle inequal-
ity limits the applicability of the notion in several natural
scenarios. Let J metric denote the time required to evaluate
the metric.

We now provide a standard definition of coverings under
a metric. An K -cover is a set L of state-action pairs with
the property that for any ���A
�	B , there exists ������
�	M�N9OPL
such that >Q�?���C
?	B�
@������
�	3�$?�R K . Let ST��KU be the size of
the largest minimal K -cover — that is, the largest K -coverL such that the removal of any ���C
�	3 would render L no
longer a cover.

Our first assumption is that the metric permits local mod-
eling of dynamics of an MDP = with transition model �
and reward function � :

Local Modeling Assumption. There exists an algo-
rithm Model for the MDP = such that, for any ���C
?	B ,
if Model is given V transitions ������
?	3�$XW �F� � and re-
wards �����F�G distributed in accordance with = and in which
all >��&���C
?	B(
F���F��
?	3�$?YRZK , then Model outputs a state[�]\ [��� [�3� �A
�	B and a reward

[� , where 8_^# � [��� [�3� �C
?	Ba`
��� [�3� �C
?	B@�2RXK , and � ��� [��b` [���2RXK . Let J model be the
maximum running time of Model.

Thus, with a sufficient number V of local state-action expe-
riences, Model can form an accurate approximation of the
local environment. Note that there is no requirement that a
destination state

[� be in the neighborhood of ���C
?	B — we
ask only that nearby state-actions permit generalization in
next-state distributions, not that these distributions be on
nearby states. The next subsection provides natural exam-
ples where the Local Modeling Assumption can be met, but
we expect there are many rather different ones as well.

In addition to an assumption about the ability to build lo-
cal (generative) models, we need an assumption about the
ability to use such models in planning.

Approximate Planning Assumption. There exists an al-
gorithm, Plan, which given a generative model for an un-
known MDP = and a state � , returns a policy � whose av-
erage reward �����<��
4�F satisfies �����<��
���dc6�����<�feA
����`g

, where � e is the optimal � -step policy from � . LetJ plan upper bound the running time of Plan and h gen upper
bound the calls to the generative model.

Note that the Local Modeling Assumption does not reduce
the state space size, so for an arbitrary and large MDP, great



computational resources may be required to meet the Ap-
proximate Planning Assumption. The purpose is not to
falsely diminish the difficulty of this task, but to abstract
it away from the problem of exploration-exploitation. The
same approach was necessary in analyzing factored-

���
.

There are at least three broad scenarios where this assump-
tion might be met. The first is settings where specialized
planning heuristics can do approximate planning due to
strong parametric constraints on the state dynamics. For
example, the recent work on planning heuristics for fac-
tored MDPs is of this form. The second is the sparse sam-
pling [6] approach, in which it has been shown that the Ap-
proximate Planning Assumption can in fact be met for arbi-
trary finite-action MDPs by a policy that uses a generative
model as a subroutine. Here the sample complexity h gen is
exponential in � per state visited (see [6]), but has no de-
pendence on the state space size. The third setting requires
a regression algorithm that is capable of accurately estimat-
ing the value of a given policy. This algorithm can be used
iteratively to find a near-optimal policy [8].

At a high level, then, we have introduced the notion of a
metric over state-actions, an assumption that this metric
permits the construction or inference of local models, and
an assumption that such models permit planning. We be-
lieve these assumptions are broadly consistent with many
of the current proposals on large state spaces. We now
provide an example that demonstrates the role of covering
numbers, and then show that these assumptions are suffi-
cient for solving the exploration-exploitation problem in
time depending not on the size of the state space, but on
the (hopefully much smaller) covering numbers under the
metric.

2.1 An Example

We can imagine at least two natural scenarios in which the
Local Modeling Assumption might be met. One of these
is where there is sufficient sensor information and advance
knowledge of the expected effects of actions that the local
modeling assumption can be satisfied even with V DX� . As
a simple example, people can typically predict the approxi-
mate effects of most physical actions available to them im-
mediately upon entering a room and seeing its layout and
content (e.g., if I go left I will exit through that door; if I go
straight I will hit that wall). They could not make such pre-
dictions for unfamiliar distant rooms. Consider the MDP
where the state space is the Euclidean maze world shown
in Figure 1.(a), and where the agent is equipped with a vi-
sion sensor. In this world, it is plausible that the local dy-
namics can be predicted at any “seen” location. To apply
this analysis, we must first specify a metric. The obvious
choice is > sight �?���C
?	B(
F���F��
?	3�N&�D � if there exists line-of-
sight between � and ��� and � otherwise. Note that this

(a) (b) (c)

Figure 1. (a) a maze world (b) a largest minimal cover for the
line-of-sight metric (c) a largest minimal cover for the line of sight
+ Euclidean distance metric.

metric satisfies symmetry, but not the triangle inequality
(which would be somewhat unnatural in this setting). For
any K � � , the covering number ST��KU is the maximum
number of points which can be positioned in the space so
that no pair have line-of-sight. One maximal set is given by
the dots in Figure 1.(b). Note that even though this a con-
tinuous state space, the covering number is much smaller,
and naturally determined by the geometric properties of the
domain.

It is unrealistic to assume that local dynamics are mod-
eled at distant locations as well as near locations which im-
plies that modeling error grows with distance. In this case,
a reasonable alternative is to define >Q�?���C
?	B�
@������
?	3�$? D> sight �?���C
?	B�
@���F��
?	3�G&���h�> euclidean �?���C
?	B(
F���F��
?	3�G& where h is
a constant controlling the rate of modeling error with Eu-
clidean distance. Using this metric, the covers shown in
Figure 1.(c) might naturally arise. Note that (in general)
we are free to use actions as well as states in defining the
metric.

The above examples are applicable to the V D � case
of the Local Modeling Assumption. The second natural
case is the more general “learning” setting, in which the
next-state dynamics permit some parameterization that is
smooth with respect to the distance metric, thus allowing
a finite sample of an environment to provide enough data
to fit a parametric next-state distribution for the neighbor-
hood. For instance, if reward appeared stochastically in
some region, it might be necessary to visit nearby states a
number of times before this distribution is learned. Alter-
natively, the dynamics could be different in different parts
of the state space. For instance, a skier moving down a hill
has dynamics dependent on the terrain conditions, such as
slope, snow type, and other factors.

Incidentally, Figure 2 illustrates the reason why standard
state space aggregation techniques [12] do not work here.
In particular, for partitioning induced by a cover on a Eu-
clidean spaces there exist “corners” where 3 (or more)
sets meet. When taking actions “toward” this corner from
within one of the sets, the distribution over the next aggre-
gate state set is inherently unstable.

3 Metric- ���
The algorithm, Metric-

���
, is a direct generalization of the���

algorithm[4]. We first outline this original algorithm.
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Figure 2. An example showing how simple state space aggrega-
tion does not work because the precise location within the aggre-
gate state ��� influences the next (aggregate) state outcome of an
action (to ��� or ��� ).

A crucial notion in
���

is that of a “known” state — a state
visited often enough such that the dynamics and rewards
are accurately modeled at this state. When the agent is not
in the current set of known states, the agent wanders ran-
domly to obtain new information. While at a known state,
it must decide whether to explore or exploit — a decision
which can be made efficiently. Intuitively, the decision to
explore is made by determining how much potential reward
the agent can obtain by “escaping” the known states to get
maximal reward elsewhere. If this number is sufficiently
large, the agent explores. This number can be computed
by planning to “escape” in a fictitious MDP = explore which
provides maximal reward for entering an unknown state.
The crucial step in the proof of

� �
is showing that either

the agent exploits for near optimal reward, or it can explore
quickly, which results in increasing the size of the set of
known states. Since the size of the known set is bounded,
the algorithm eventually exploits and obtains near optimal
reward.

Metric
���

has a few key differences. Here, a “known”
state-action is a pair ���A
�	B meeting the antecedent of the
Local Modeling Assumption — namely, any pair ���C
?	B for
which the algorithm has obtained at least V K -close ex-
periences ���F��
�	M��
��F� ��
?�����F� �N& . Unlike in

���
, our algorithm

does not explicitly enumerate this set of known states, but
rather is only able to decide if a particular state-action is
known. Thus, in the most general version of our algorithm,
our model of the MDP is represented simply by a list of all
prior experience.

As in the original
���

, a key step in Metric-
���

is the cre-
ation of the known MDP — a model for just that part of

the global MDP that we can approximate well. Here the
known MDP at any moment is given as a generative model
that “patches together” in a particular way the generative
models provided by the planning algorithm at known states.
More precisely, the approximate known MDP generative
model takes any state-action ���A
�	B and a flag bit exploit and
operates as follows:

1. If ���C
�	3 is not a known state-action, output “fail” and
halt.

2. Else give ���C
?	B and the V prior experiences���F��
?	3��
4�F� ��
?�����@� �G& in the � -neighborhood of ���C
?	B to
algorithm Model; let the resulting outputs be

[� and
[� .

3. If exploit is 1, set �
	
[� and � 	 � ; otherwise �
	 �

and � 	 � .
4. If for some action

[	 , the pair � [�C
 [	B is itself a known
state-action, output

[� and � and halt.

5. Else output a special state � and reward � and halt.

Intuitively, we have described a generative model for two
MDPs with identical transition dynamics, but differing re-
wards according to the value of the exploit bit. In both
models, all transitions that end in a state with no known ac-
tions are “redirected” to a single, special absorbing state � ,
while all other transitions of the global MDP are preserved.
Thus initially the known MDP dynamics are a small subset
of the global MDP, but over time may cover much or all
of the global state space. For rewards, when exploit is 1,
rewards from the real environment are preserved, whereas
when exploit is 0, reward is obtained only at the absorb-
ing state, thus rewarding (rapid) exploration (escape from
known state-actions). We shall use

[= exploit to denote the
MDP corresponding to the generative model above when
the exploit input bit is set to 1, and

[= explore to denote the
MDP generated by setting exploit to 0.

Note that under our assumptions, we can always simulate
the approximate known MDP generative model. We can
also view it as being an approximate (hence the name) gen-
erative model for what we shall call the true known MDP
— the MDP whose generative model is exactly the same
as described above, except where the local modeling algo-
rithm Model is perfect (that is, in the Local Modeling As-
sumption, >��&���C
�	3�
@���F� 
?	3�G& RPK implies 8 ^# � [��� [�B� �C
?	B `
��� [�3� �C
?	B@�AD � , and � ��� [���` [� �AD � ). This may still be only
a partial model of the global MDP, but it has the true prob-
abilities for all known state-actions. We shall use = exploit

to denote the MDP corresponding to the generative model
above with a perfect Model and the exploit input bit set to
1, and = explore to denote the MDP generated with a perfect
Model and exploit set to 0.



Now we outline the full Metric-
���

algorithm. It is impor-
tant to emphasize that this algorithm never needs to explic-
itly enumerate the set of known state-actions.

Algorithm Metric-
� �

Input: >Q��� 
��  , Model, Plan
Output: A policy �

1. Use random moves until encountering a state � with
at least one known action 	 (that is, where there are at
least V K -close previous experiences to ���C
?	B ).

2. Execute Plan twice, once using the generative model
for
[= exploit and once using the generative model for[= explore. Let the resulting policies be � exploit and� explore, respectively.

3. If � ^� explore
�<� explore 
4�� c � , execute � explore for the next

� steps, then go to Step 1.

4. Else, HALT and output � exploit.

The claim is that this algorithm finds a near optimal policy,
in sample complexity and running time that depend only on
the covering number under the metric. We now turn to the
analysis.

4 Metric- � � Analysis
We first state the main theorems2 of the paper.

In the following theorems, we use:

1. � e is an optimal policy in =
2. � is the time horizon

3. V and K are the sample complexity and precision de-
fined in the Local Modeling Assumption

4.
g

is the precision defined in the Approximate Planning
Assumption

5. � is an accuracy parameter

6.
�

a confidence parameter.

Theorem 4.1 (Sample Complexity) Suppose � c K � � � �� .
With probability �d` �

, after at most
7���� !	�A/
�� �B! 7� 5 /���� �&��� �  �V9ST��K  actions in = , Metric-

���
halts in a state � , and

outputs a policy � such that � � �<��
4�� � � � ��� e 
����` �b`� g ` � K � � � �F .
2The form of these claims differs from the original � � state-

ment because the results hold without an assumption of a mixing
MDP. Theorems similar to the original � � can be constructed in
the metric case by making an additional assumption of mixing.
The “mixing free” form stated here is subject to fewer assump-
tions, and therefore more general. See [7] for details.

This shows that the sample complexity (the number of ac-
tions required) is bounded in terms of the covering numberS ��KU (and not the size of the state space). In addition to
bounding the sample complexity, we bound the time com-
plexity.

Theorem 4.2 (Time Complexity) Let � be the overall
sample complexity. Metric-

���
runs in time at most� ! � � 5 /� J metric �

� �2�<J plan � h gen J model  �������  .
A few lemmas are useful in the proofs. First we define[= to be an K -approximation of = if for all states � ,8 #�� � [�����F�*� �C
�	3 ` �����F��� �C
?	B�� R]K , and � ������B` [� ���F@�3RHK .
The original Simulation Lemma for

���
had a dependence

on the size of the state space that we cannot tolerate in our
setting, so we first need an improved version:

Lemma 4.3 (Simulation Lemma) If
[= is an K -

approximation of = , then for any initial state � , any
horizon � , and any policy � ,

� � ^� �<��
4��U` � � �<��
4�F@�BR K � � � ��
Proof. Let � : D��3��� 5 
4� � 
 ��� �4� : "! be the set of length J
paths. For # O$� : , let # : be the J -th state in # and let % : ��#�
and
[% : ��#� be the probability of # in = and

[= , respec-
tively. Let &����F��� �� and

[&����F� � �� be the transition probabili-
ties under � in = and

[= , respectively. Since
[= is an K -

approximation, for any state � � , 8 # � & ���3� � � U` [&����M� � � @� RK . Then '(*)*+-,/. % � % :  5 ��#�U` [% :  5 ��#���
D

'(*)*+ , ' # � % : ��#��& ���3� # :  ` [% : ��#� [& ���3� # : ��
R

'(*)*+ , ' # � % : ��#��& ���3� # :  ` [% : ��#��& ���3� # : ��
��� [% : ��#��&����3� # :  ` [% : ��#� [&����3� # : ��

D
'(*)*+ , ' # &����3� # : �� % : ��#�U` [% : ��#���
�
[% : �0#Q@� &����3� # :  ` [& ���3� # : ��

R
'(*)*+ , � % : ��#�U` [% : ��#��� �TK

where we have used the triangle inequality and linearity of
expectation. Induction on J implies that:'
paths

1111 243#65�0 � ' 13' #�7 ��� 5 
 �/�/� 
4� 7 U` 283#�5�0 ^� ' 1B' #�7 ��� 5 
 �/�/� 
4� 7  1111 R K �9�
Since the rewards

[� in
[= are also K -accurate,11111 � ^� ����
���U` � length
7

paths in
^�

: �
�

7'
:<; 5
� ��� : <; 11111 R K=�



The result follows using the previous two equations.

Now we restate the “Explore-or-Exploit” lemma from [4].

Lemma 4.4 (Explore or Exploit) Let � e be the optimal
policy for the global MDP = , and let � eexploit be the optimal
policy for the true known MDP = exploit described above.
Then for any state � of = exploit and for any ��� ��� � ,
either

�Q� exploit �<� eexploit 
4�F c ��� ��� e 
��� ` �
or the optimal policy � eexplore for = explore has probability of
at least � of leaving the known states in � steps in = .

One subtle distinction from the original
���

algorithm ex-
ists. Here, although the algorithm plans to reach some un-
known state, by the time this state is reached, it might ac-
tually be known due to the Local Modeling Assumption.
Note that in the maze world example, the agent might plan
to escape by moving around a corner. However, when ac-
tually executing this escape policy, the states around the
corner could become known before they are reached in �
steps, if they come into line of sight beforehand.

We now establish that Metric-
���

ceases to explore in a rea-
sonable amount of time. In the original

���
this was a con-

sequence of the Pigeonhole Principle applied to the number
of states. A similar statement holds here, but now we use
the size of a cover under the metric. It is important to note
that this lemma holds whether or not the covering numberS ��KU is known.

Lemma 4.5 (Exploration Bound) Metric-
���

encounters at
most V S ��KU unknown state-actions.

Proof. First, consider the VYDX� case. We construct a set L
as follows: the state-action ���C
?	B at time J is added to the
set L if

� ��� � 
?	 �  O L��H>Q�?���C
?	B�
@��� � 
?	 � & c K=�
Note that the state at time J is unknown if and only if

� ��� � 
�	 �  O � earlier state-actions !�� >��&���A
�	B(
@��� � 
�	 � & c K
and so if ���C
?	B is unknown, then it is added to L . Thus,
the size of L at time J is an upper bound on the number of
unknown state-action pairs encountered by the algorithm
before time J . Since no element of L covers another ele-
ment in L , L is minimal. In particular, if any element is
removed from L the set of states covered by L is reduced.
It follows that for all J the size of L is less than ST��K  ,
and hence the algorithm cannot encounter more than ST��KU
unknown state-actions.

For the general V case, consider constructing V different
sets, L 5 
�� � � 
�L � . The state action at time J is added to
only one of the sets L�� if there is no K -close element in L�� .
By an analogous argument, if a state-action is unknown, it
is added to some L�� , and so the sum of sizes of L�� bounds
the number of unknown state-actions encountered by the
algorithm before time J . Again, by construction, each L	� is
minimal for all J . Hence, the size of each L
� is bounded byS ��KU and so the number of unknown state-actions encoun-
tered by the algorithm is bounded by V9ST��KU .

We now provide the proofs of the main theorems.

Proof of 4.1. The exploration bound of Lemma 4.5 implies
we encounter a known state after a number of actions that
is at most V9ST��KU , which bounds the number of successful
exploration attempts. Each attempted exploration occurs
when � ^� explore

�<� explore 
4�F c � , and so ��� explore �<� explore 
4�� c
�b`�K � � � �F . By definition of = explore, the chance of suc-
cessful exploration is greater than ��` K � � �H�� . Hence, at
most,

7 ��� !/�C/
6� � ! 7  5 / �/� �.� � �  actions successful exploration of
the state spaces occurs with a

�
chance of error. The total

number of actions before halting is less than the sum of the
exploration actions known states and the actions taken in
unknown states.

The decision to halt occurs when � ^� explore
�<� explore 
4�F R � ,

which implies ��� explore �<� eexplore 
4�F R � �TK � � � �F�� g due
to planning and simulation error. By the Explore or Exploit
lemma

� � exploit �<� eexploit 
��� cH� � �<� e 
��� ` � ` K � � � �� ` g �
Due to simulation and planning error in computing an op-
timal policy in = exploit,

��� exploit ��� exploit 
4�F c ��� ��� e 
���U` � ` � K � � � �� ` � g �
The result follows since a policy in = has no less reward
than in = exploit.

Proof of 4.2. It is never necessary to evaluate the metric
between two samples more than once. There are at most� ! � � 5 /� pairs of samples, so line 1 of Metric-

���
take time

at most J metric
� ! � � 5 /� computation. Step 2 is executed at

most � times since at least one transition occurs before
reentering step 2. One call to Plan requires time at mostJ plan �Hh gen J model so the total time spent on step 2 is at

most
� �2�<J plan � h gen J model  . Step � takes total time at

most �����  . The result follows by adding these times.



5 Discussion

It is difficult to quantify the exact scaling improvements of
metric-

���
over

���
because the improvements are inher-

ently dependent upon the exact form of the local model-
ing assumption. In the extreme case where the state-action
space is continuous and ST��K  is finite,

���
has an infi-

nite sample complexity while metric-
���

has a finite sample
complexity. In less extreme cases, the advantage of metric-���

is (naturally) less extreme. It is worth noting that the
extreme case is not too unusual. Certainly, many control
problems are modeled using continuous (or virtually con-
tinuous) parameters.

The metric-
���

analysis implies that local modeling re-
quires weaker assumptions about the behavior of the world
than state aggregation. It is not necessary for aggregations
of states to have Markovian dynamics in order to engage
in successful exploration. Instead, all that we need is the
ability to generalize via local modeling. Of course, when
aggregations of states do have Markovian dynamics, state
aggregation may work well.
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