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Abstract

We consider the fundamental problem of monitor-
ing (i.e. tracking) the belief state in a dynamic sys-
tem, when the model is only approximately correct
and when the initial belief state might be unknown.
In this general setting where the model is (perhaps
only slightly) mis-specified, monitoring (and con-
sequently planning) may be impossible as errors
might accumulate over time. We provide a new
characterization, thealue of observationwhich
allows us to bound the error accumulation.

The value of observation is a parameter that gov-
erns how much information the observation pro-
vides. For instance, in Partially Observable MDPs
when it is 1 the POMDP is an MDP while for an
unobservable Markov Decision Process the param-
eter is 0. Thus, the new parameter characterizes a
spectrum from MDPs to unobservable MDPs de-
pending on the amount of information conveyed in
the observations.

Introduction

Chicago, IL, USA
sham@tti-c.org

Tel Aviv University
Tel Aviv, 69978, Israel
mansour@cs.tau.ac.il

& Kanazawa, 198p— all of which share the Markov as-
sumption. Naturally, one would like to provide conditions
as to when monitoring is possible when modelling errors are
present. Such conditions can be made on either the dynam-
ics of the system (i.e. the transition between the states) or on
the observability of the system. While the true model of the
transition dynamics usually depends on the application itself,
the observations often depend on the user, e.g. one might be
able to obtain better observations by adding more sensors or
just more accurate sensors. In this paper our main interest is
in quantifying when the observations become useful and how
it effects the monitoring problem.

Before we define our proposed measure, we give an illus-
trative example of an HMM, where the value of information
can vary in a parametric manner. Consider an HMM in which
at every state the observation reveals the true state with prob-
ability 1 — e and with probabilitye gives a random state. This
can be thought of as having a noisy sensor. Intuitively, as
the parameter varies from zero to one, the state monitoring
become harder.

We introduce a parameter which characterizes how infor-
mative the observations are in helping to disambiguate what
the underlying hidden state is. We coin this parameter the
value of observatianOur value of observation criterion tries

Many real world applications require estimation of the un-to quantl_fy th{:\t (.jlffe'rent belief states should _have different
known state given the past observations. The goal is to mairRPservation distributions. More formally, tiig distance be-
tain (i.e. track) ebelief state a distribution over the states; tWeen any two belief states and their related observation dis-
in many applications this is the first step towards even morérlbutlons is maintained up toa multiplicative factor (which
challenging tasks such as learning and planning. Often thi$ at léast theralue of observatioparameter). _

dynamics of the system is not perfectly known but an approx- In this paper we use as an update rule a variant of the
imate model is available. When the model and initial state ar&ayesian update. First we perform a Bayesian update given
perfectly known then state monitoring reduces to Bayesia®ur (inaccurate) model, and then we add some noise (in par-
inference. However, if there is modelling error (e.g. the tran-ticular, we mix the resulting belief state with the uniform dis-
sition model is slightly incorrect), then the belief states in thetribution). Adding noise is crucial to our algorithm as it en-
approximate model may diverge from the true (Bayesian) besures the be_llefs do not become mcorrectly overly confident,
lief state. The implications of such a divergence might bethus preventing the belief state from adapting fast enough to
dire. new informative information.

The most popular dynamic models for monitoring some Our main results show that if the model is only approxi-
unknown state are the Hidden Markov Model (HM{Ra-  mate then our modified Bayesian updates guarantee that the
biner & Juang, 1986and extensions such as Partially Observ-true belief state and our belief state will not diverge — assum-
able Markov Decision ProcefButerman, 1994 Kalman Fil-  ing the value of observation is not negligible. More specifi-

ters[Kalman, 1960 and Dynamic Bayesian NetworkBean  cally, we show that if the initiall state is approximately ac-
curate, then the expected KL-divergence between our belief

*Supported in part by a grant from ISF and BSF. state and the true belief state remains small. We also show



that if we have an uninformative initial state (e.g., arbitrarythe algorithm; Subsection 3.2 provides the main monitoring
initial belief state) we will converge to a belief state whosetheorem; Subsection 3.3 proves the Theorem. In Section 4,
expected KL-divergence from the true belief state is smallwe show how to extend the results into the dynamic Bayesian
and will remain as such from then on. Finally, we extend oumetworks.

results to the setting considered[Boyen & Koller, 1998,

where the goal is to compactly represent the belief state. Th2 Preliminaries

g{fs?alf\l/g[]ioind rate of convergence depends on the value %n Hidden Markov Model (HMM) isi-tuple, (S, P, Ob, O),
) where S is the set of states such thgt| = N, P is the

unggﬁ ?natuéﬁ\l,ifﬁmgnvtwg naoq Ir}if:?gé?t?wr;ﬁg?i; nggrnet)?_%ransition probability form every state to every staf# is
ying P y : the observations set and is the observation distribution in

ample, it might be that th? tr_ansition mOd?' is slighﬂy influ- every state. Abelief stateb is a distribution over the states
enced by some other extrinsic random variables. Given thesg such thafb(z‘) is the probability of being at state. The

extrinsic variables, the true transition model of the EMVIrON+ 4 nsition probabilities of the belief states are defined accord-
ment is only a slightly different model each time step. This

is a case where we might like to model the environment 24n9 to HMM transition and observation probability, using a

X . ; %ayesian update.
Markovian, even at the cost of introducing some error, due to For a belief state(-), the probability of observing is

the fact that transition model is not entirely Markovian. OurO(O|b) where
results apply also to this setting. This is an encouraging re- '
sult, since in many cases the Markovian assumption is more _

of an abstraction of the environment, then the a precise de- Oole) = Z Oofs)b(s)-

scription. °

Related Work. The work most closely related to ours is that After observing an observatianin belief state(-), the up-

of Boyen and Koller (1998), where they considered monitor-dated belief state is:

ing in a Hidden Markov Model. In their setting, the environ- o O(o|s)b(s)

ment is exactly known and the agent wants to keepam- (Uy'b)(s) = o0l

pact factored representation of the belief state (which may

not exactly have a factored form). Their main assumption isvhereUS is defined to be the observation update operator.
that the environment is mixing rapidly, i.e the error contractAlso, we define the transition update operafoas,

by geometric factor after each time we apply the transition

matrix operator. In contrast, we are interested in monitoring (TFb)(s) = ZP(s’, s)b(s").

when we have only aapproximatesnvironment model. Both s’

our work and theirs assume some form of contraction where

. -~ We denote by, the belief state at timg where at timé) it
beliefs tend to move closer to the truth under the Bayesiay bo. (We will discuss both the case that the initial belief state

gEgg:\?asltgnc\)/\t/j{lﬁelsﬂggﬂjsgtns)z aﬁzusr]sqgrt\;or:i(?: (zlll;totthetf\l/: Itlignc[j known and the case where it is unknown.) After observing
0; . . 9 P : Nobservatior; € Ob, the inductive computation of the belief
sition matrix. The main advantage of our method is that Ngiate for timer + 1 is:

many applications one can improve the quality of its observa-
tions, by adding more and better sensors. However, the mix- bii1 = TPUSbt,

ing assumption used by Boyan and Koller may not be alter- i ) )
able. Furthermore, in the final Section, we explicitly considerVhere we first update the belief state by the observation up-

their assumption in our setting and show how a belief stat&l@te operator according to the observaspand then by the

can be compactly maintained when both the model is appro)g_rar}snmn update operator. It is stra|ghtforwarq to can|der

imate and when additional error accumulates from maintain@ different update order. Thereforte,, is the distribution

ing a compact factored representation. over states qondmoned. on observifigy, 01,...0;} and on
Particle Filtering[Doucet, 1998is a different monitoring  the initial belief state being.

approach, in which one estimates the current belief state b . L

making a clever sampling, where in the limit one observes th‘:é Approximate Monitoring

true belief state. The major drawback with this method is inwe are interested in monitoring the belief state in the case

the case of a large variance where it requires many sampleghere either our model is inaccurate or we do not have the

A combination of the former two methods was considered bycorrect initial belief state (or both). Let us assume that an

[Ng etal., 2002 algorithm has access to a transition maff:and an observa-

Building on the work offBoyen & Koller, 1998 and the 1 GistributionO, which have error with respect to the true
trajectory tree ofkearns et _al., 20(1]2Mc_AIIester and Sm_gh_ models. The algorithm’s goal is to accurately estimate the
(1999) provides an approximate planning algorithm. Similar -

extensions using our algorithm may be possible. belief state at time, which we denote by;.

Outline. The outline of the paper is as follows. In Sec- For notatlogal simplicity, we definéo, = Eovo(.|b)-
tion 2 we provide notation and definitions. Section 3 is theWhen P and P are clear from the context, we defifieto
main section of the paper and deals with monitoring and ive 7" andT to beTP. WhenoO andO are clear from the
composed from several subsections; Subsection 3.1 describesntext, we definé/, to beU? andU, to beU?’.



Our main interest is the behavior of 3.1 The Belief State Update
Now we present the belief state update. The naive approach
is to just use the approximate transition matfband the ap-

where the expectation is taken with respect to observation s roximate observation distributiai. The problem with this

quenceg oo, o1 0r_1} drawn according to the true model pproach is that the approximate belief state might place neg-
01y Op

; X . . ' ligible probability on a possible state and thus a mistake may
andb; andb; are the belief states at tine with respect to 1,5 irreversible.

these observation sequences. o Consider the following update operatbr For each states
In order to quantify the accuracy of our state monitoring, s ¢ g,

we must assume some accuracy conditions on our approxi- = 1 - :

mate model. The KL-distance is the natural error measure. .(T)(S) - .(1 eU.)(T.)(S.) - eUUr'u. (), .

The assumptions that we make now on the accuracy of th¥hereuni is the uniform distribution. Intuitively, this update

model will later be reflected in the quality of the monitoring. OPerator/ mixes with the uniform distribution, with weight

ey, and thus always keeps the probability of being in any state
Assumption 3.1 (Accuracy) For a given HMM model bounded away from zero. Unfortunately, the mixture with
(S,P,0b,0), an (er,ep) accurate model is an HMM the uniform distribution is an additional source of inaccuracy
(S, P,Ob, 0), such that for all states € S, in the belief state, which our analysis would latter have to

N account for.
KL(P([s)[|P(|s)) < er The belief state update is as follows.
KL O(|

| <
(OC[s)[lO(]s)) < eo - biyr = TUp, b, 1)
whereb, is our previous belief state.

B |KL(bb1)]

Next we define the value of observation parameter.

Definition 3.1 Given an observation distributio®, let M/ © 3.2 ) Monltoryng the belief state ) )
be the matrix such that ite, s) entry isO(o|s). TheValue  Inthis subsection we present our main theorem, which relates

of Observation~, is defined asnf,.|,,—1 [|Mz[; and itis the accuracy of the belief state to our main parameters: the
in [0, 1]. quality of the approximate model, the value of observation,
’ and the weight on the uniform distribution.

Theorem 3.2 At timet let b, be the belief state updated ac-
cording to equation (1)), be the true belief stateZ, =

[b1 = ball1 = [|O(:|b1) — O(-[b2)[[1 = 7/[br — ba]|1 . E {KL(thBt)}, and~ be the value of observation. Then

where the first inequality follows from simple algebra. Zyy1 < Zy+ e — aZ?,
The parametety plays a critical rule in our analysis. At
the extreme, when = 1 we have||b; — bs||1 = ||O(:]b1) —
O(:|b2)|[1. Note that this definition is very similar to def-  Furthermore, if||130 — boll1 < \/gthen for all timeg:
inition of the Dobrushin coefficientsup,, ,, [|P(b1,-) — log N
P(be,-)]]1 and it is widely used in the filtering literature 7, < \/?_ o v\ /¢
«

[Moral, 2004. We now consider some examples. 9

Let~ bel and consideb, having support on one state and Also, for any initial belief states, and by, andd > 0, there
by on another state. In this cafie; — bqf|; = 2 and there-  exists a timer(§) > 1, such that for any > 7(5) we have
fore ||O(:|b1) — O(:]b2)|l1 = 2, which implies that we have log N
a different observations from the two states. Since this holds 7, < \/? L= —"U\2e 1§
for any two states, it implies that given an observation we can o Y
uniquely recover the state. To illustrate the value observation The following corollary now completely specifies the algo-
characterization, in POMDP terminology fer= 1 we have  rithm by providing a choice fot;;, the weight of the uniform
a fully observable MDP as no observation can appear wittglistribution.
positive probability in two states. At the other extreme, for anCorollary 3.3 Assume thaﬂ?yo — b1 < \/g andey =
unobservable MDP, we can not have a valueyaf 0 since <. Then for all timeg,

[|O(:|b1) — O(|b2)|]1 = 0 for any two belief state, andb,. & N

Recall the example in the Introduction where at every state 7, < 6log - /€T +yveo
the observation reveals the true state with probabhility and -~
with probability e gives a random state. Here, it is straight- Proof: With the choice oy, we have:

Note that if the value of observation-s then for any two
belief state$; andb,,

wheree = er + ey log N + 3v,/eo anda =

2 log? % '

forward to show that is 1 — e. Hence, ag approaches, the

value of observation approaches V2e = \/4€T +67veo < 3\/€T +rveéo-
We now show that having a value etbounded away from And,

zero is sufficient to ensure some guarantee on the monitor- N  NlogN N

: ; L . log — =log < 2log —,

ing quality, which improves as increases. Throughout, the €U € €T

T
paper we assume that> 0. which completes the proof. |



3.3 The Analysis Note thatZ; is a positive super-martingale and therefore

We start by presenting two propositions useful in proving theconverges with probability to a random variableZ’. The

theorem. These are proved later. The first provides a boun@XPectation ofZ’ cannot be larger thagy, since whenever

on the error accumulation. 7' is larger than\/g its expectation in the next timestep is

Proposition 3.4 (Error Accumulation) For every belief states Strictly less than its expected value. Since by definitn>

b and b, and updates;,, — TU, b, andbs; — 70, b, Zy then, regardless the our initial knowledge on the belief

we have: t e state, the monitoring will be accurate and results in error less
' than,/<. O

Eo. [KL(bt“ lber)| < KL(billbr) + v log N + o Error Accumulation Analysis

_KL(O('|bt)H6('|Bt)> In this subsection we present a series of lemmas which prove
. . Proposition 3.4. The lemmas bound the difference between
The next proposition lower bounds the last term in Propothe ypdates in the approximate and true model.

sition 3.4. This term, which depends in the value of obser- \ye start by proving the Lemma 3.8 provided at the begin-
vation, enables us to ensure that the two belief states will ”Orﬁing of the Subsection

diverge.
Proposition 3.5 (Value of Observation) Let be the value of Lemma 3.6 For every belief statel; andb,,
observationp, and b, be belief states such thag(s) > u &
for all s. Then KL(Tbi|[Tb2) < KL(b1l[b2) + ex
2 Proof: Let us define the joint distributiong, (s',s) =
KL(O(-|b)||O(-|b2)) > 1 VKL(blleQ) P(s,s")bi(s) andps(s’, s) = P(s, s")ba(s). Throughout the
2 log m proof we specifically denoteto be the (random) ‘first’ state,
_3yy/eo +e ands’ to be the (random) 'next’ state. By the chain rule for
TvVeo T o relative entropy, we can write:
Using these two propositions we can prove our main theo- R
rem, Theorem 3.2. N KL(p1llp2) = KL(b1|b2) + Esp[KL(T(:|5)[|T(:]5)]
Proof of Theorem 3.2: Due to the fact that/ mixes with < KL(by||b2) + er

the uniform distribution, we can take= ¢;;/N. Combining _ .
Propositions 3.4 and 3.5, and recalling the definition,afe ~ Where the last line follows by Assumption 3.1.

obtain that: Let p1(s|s’) and p2(s|s’) denote the distributions of the
. first state given the next state, unggrandp, respectively.
E,, [KL(bt+1||bt+1)|0t—1, oy Oo} < Again, by the chain rule of conditional probabilities we have,
. N2 ~
KL(by||b) + ¢ —a (KL(thbt)) KL(p1|lp2) = KL(Tby||Tobo)

+Eq [ K L(p1(s]s))[[p2(s]s")]

By taking expectation with respect{og, 01, . ..0:—1}, we ~
t ) KL(Tby||Ths),

have:

Y

IA

Ziy1

2 - . . .
B 5 where the last line follows from the positivity of the relative
Zite—ab {(KL(MM) } entropy. Putting these two results together leads to the claim.

< —aZ? o , ,
S Zite-aZi, The next lemma bounds the effect of mixing with uniform

where the last line follows since, by convexity, distribution.

E [(KL(btwt)ﬂ > (E [KL(thl;t)Dg,

which proves the first claim in the theorem. _
We proceed with the case where the initial belief state is Proof: By convexity,

good in the sense thdiby — boll; < V<. Then we have

Lemma 3.7 For every belief states, andb,
KL(Th||Tbs) < (1 —ey)KL(Tbi||Ths) + ey log N

that Z, is always less thag/<. The functionZ, — aZ? + ¢ KL(To|ITb2) < (1 _;(UL)I;i(le ‘.'Tb2)
has derivativel — 2Z;«, which is positive wherz; < /<. Feu KL(Th[|Uni (A'))
SinceZ, at /< is mapped to,/<, then everyz, < /< is < (1= ev)KL(Th[[T02)
mapped to a smaller value. Hence thewill always remain +eulog N,

below \/g )
We conclude with the subtle case of unknown initial belie
state, and define the following random variable

fWhere the last line uses the fact that the relative entropy be-
tween any distribution and the uniform one is bounded by

log N. (|
7 _ Ty, Ly > \/g Combining these two lemmas we obtain the following
t = \/g, Otherwise lemma on the transition model.



Lemma 3.8 For every belief statek; andb,, Proof of Proposition 3.4: Using the definitions of updates
and the previous lemmas:

o g , Eo, b, {KL(bt—&-lHi’Hl)]
After dealing with transition model, we are left to deal with R
the observation model. We provide an analog lemma with = E, o, [KL(TUotthTUOt z}t)}
regards to the observation model.

KL(Tby||Tby) < KL(by||by) + e + ey log N

IN

Eoyon, [KL(UOtthUotzSt)} ter+eylogN

< KLby|lb) + co — KL(O(|by)]|O(-|by))
+er + ey log N

Lemma 3.9 For every belief statel; andb,,

Eono( o) {KL(UoblHﬁobz)}

< KL(bi||b2) + o — KL(O(-|b1)||O(:b2)) where the first inequality is by Lemma 3.8 and the second is
by Lemma 3.9 This completes the proof of Proposition 3.4.
Proof: First let us fix an observatiom We have: y P P P 0
KL(U,by||Usbs) = Z U,bi () log U ob1(s) Value of Observation Proposition - The Analysis _
Usba(s) The following technical lemma is useful in the proof and it
_ Z(U b2)(6) log 0(0]s)b1(5)/O(0[by) relates the.; norm to the AKL divergence. 1
S 001 5(o|s)b2(s)/5(0|b2) _II__(;g}Ta 3.10 Assume thafi(s) > y for all s and thaty < 3.
bl(s) O(O‘bl) ~ ~ 1
= U,b1)(s)lo — log — KL(b|b) < ||b —bl||; log —
DU ()lor 5~ log 5 0 (W6) < 16 = bl log -
O(o|s) Proof: Let A be the set of states whelgs greater tham,
U,b log = . A
+XS:< D()log 7 ie. A — {s|b(s) > b(s)}. So
R ~ b(s) b(s)
where the last line uses the fact tidato|b, ) andO(o|b2) are KL(blJb) = Zb( ) log b(s) Z b(s)
constants (with respect t). s seA
Now let us take expectations. For the first term, we have: _ Z(b(s) b b(s)
Foy | (Ubr)(5)log 2 = =R
o~by ob1)(s) log 1 5
b 2o ba(s) < log > (b(s) — b(s))

fZO olby)

sEA

(s
sEA
O(ols bi(s) .
ZO b) tog (S)] +> (s 10g< b(s)b_b(s)>
bi(s) _

= O(o|s)b1( log b1||b 1 . .
Z [$)a(s)log 5y = KL (ballb2) < log = 3 (b(s) = b(s)) + 3 (b(s) -
H sEA s€EA
where the last step uses the fact thag O(o|s) = 1. Simi- 1 .
larly, for the third term, it straightforward to show that: = (10g m + 1) 16— b1
O(ols) where we have gsed the congavity of the log function and
Eonpy |3 (Uobr)(s) log B(ols) thaty, ., (b(s) — b(s)) = |Ib—b],. The claim now follows
) using the fact that, < 1. O
=" 00lbn) 3" O(ols)ba(s) log 9(O|8) We are now ready to complete the proof. We will make
- — O(o|b1) O(o|s) use of Pinsker’s inequality, which relates the KL divergence
~ to theL; norm. It states that for any two distributiopgndg
= o [KL(OC15)[10C]5))] )
KL(pllg) > 5 (Ip —all1)?. 2
For the second term, 2

Proof of Proposition 3.5: By Pinsker’s inequality and As-
sumption 3.1, we have

10(1s) = OCI)ll < V2K L(O(1s)[0(15)) < VZeo

for all statess € S. Using the triangle inequality,

O(olb1)
O(olb2)
directly from the definition of the relative entropy. The lemma

follows from Assumption 3.1. O A o o R
Now we are ready to prove Proposition 3.4. 1O(:1)—O(:|b)[1 < |O(:]1b)—=O(C1b)|l1+/|O(-|b)—O(-|b) |1 -

EONbl

] — KLO([b)]|O(]b))



Therefore,

5 Conclusions and Open Problems
In this paper we presented a new parameter in HMM, which

IOC1b) = OC )l = ”O(A"b)f O(~|b)[|1 governs how much information the observation convey. We
—|O(:]b) — O(:|b) || showed how one can do fairly good monitoring in absence of

- ~ s - an accurate model/unknown starting state/compcat represen-
> b If‘ll — [OC16) = O b)llx tation as long as the HMM’ observations are valuable. An

> 4lb—bll1 — V2e0 open question that remains is whether the characterization

where we used|O(-|b) — O(-]b)||; < max, [|O(

|s) —

O(]s)|l and Pinskers inequality to boundO(:|b) —

O}l < /2K LOCDIOC)
Combing with Pinsker’s inequality, we have

can be made weaker and still an agent would be able to track,
for instance if in most states the observations are valuable but
there are few in which they are not, can we still monitor the
state? Another very important research direction is that of
planning in POMDPs. Our results show that one can monitor
the belief state of the agent, however this is not enough for
the more challenging problem of planning, where one should

VD 1 YA Iso decide which actions to take. It is not clear whether our
. . s> = M A 2 also decide which actions to take.
KLOCB)OCI) = 2 (|OC[6) = OC[b)1) characterization can yield approximate planning as well. The
1 - 9 major problem with planning is that of taking the best ac-
= 5(7”b —blli = V2¢0) tion w.r.t to a distribution over states can lead to disastrous
1 T R state and one should look into the long term implications of
= 5o =bll1)” = llb—bll1v2e0  her actions due to the uncertainty. We leave these interesting
e problems to future work.
o
1 .
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biv1 = HTU,by, (3

where H projects the belief state into the closest point in the
factored representation space. Next we adopt the followin
definition from[Boyen & Koller, 1998 regarding the quality
of the factored representation.

Definition 4.1 An approximatiorb of b, incurs errore if rel-
ative to true belief staté we have

KL(b||b)) — KL(bIb) < ¢



