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Abstract

We consider the fundamental problem of monitor-
ing (i.e. tracking) the belief state in a dynamic sys-
tem, when the model is only approximately correct
and when the initial belief state might be unknown.
In this general setting where the model is (perhaps
only slightly) mis-specified, monitoring (and con-
sequently planning) may be impossible as errors
might accumulate over time. We provide a new
characterization, thevalue of observation, which
allows us to bound the error accumulation.
The value of observation is a parameter that gov-
erns how much information the observation pro-
vides. For instance, in Partially Observable MDPs
when it is 1 the POMDP is an MDP while for an
unobservable Markov Decision Process the param-
eter is 0. Thus, the new parameter characterizes a
spectrum from MDPs to unobservable MDPs de-
pending on the amount of information conveyed in
the observations.

1 Introduction
Many real world applications require estimation of the un-
known state given the past observations. The goal is to main-
tain (i.e. track) abelief state, a distribution over the states;
in many applications this is the first step towards even more
challenging tasks such as learning and planning. Often the
dynamics of the system is not perfectly known but an approx-
imate model is available. When the model and initial state are
perfectly known then state monitoring reduces to Bayesian
inference. However, if there is modelling error (e.g. the tran-
sition model is slightly incorrect), then the belief states in the
approximate model may diverge from the true (Bayesian) be-
lief state. The implications of such a divergence might be
dire.

The most popular dynamic models for monitoring some
unknown state are the Hidden Markov Model (HMM)[Ra-
biner & Juang, 1986] and extensions such as Partially Observ-
able Markov Decision Process[Puterman, 1994], Kalman Fil-
ters[Kalman, 1960] and Dynamic Bayesian Networks[Dean
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& Kanazawa, 1989] — all of which share the Markov as-
sumption. Naturally, one would like to provide conditions
as to when monitoring is possible when modelling errors are
present. Such conditions can be made on either the dynam-
ics of the system (i.e. the transition between the states) or on
the observability of the system. While the true model of the
transition dynamics usually depends on the application itself,
the observations often depend on the user, e.g. one might be
able to obtain better observations by adding more sensors or
just more accurate sensors. In this paper our main interest is
in quantifying when the observations become useful and how
it effects the monitoring problem.

Before we define our proposed measure, we give an illus-
trative example of an HMM, where the value of information
can vary in a parametric manner. Consider an HMM in which
at every state the observation reveals the true state with prob-
ability 1− ε and with probabilityε gives a random state. This
can be thought of as having a noisy sensor. Intuitively, as
the parameterε varies from zero to one, the state monitoring
become harder.

We introduce a parameter which characterizes how infor-
mative the observations are in helping to disambiguate what
the underlying hidden state is. We coin this parameter the
value of observation. Our value of observation criterion tries
to quantify that different belief states should have different
observation distributions. More formally, theL1 distance be-
tween any two belief states and their related observation dis-
tributions is maintained up to a multiplicative factor (which
is at least thevalue of observationparameter).

In this paper we use as an update rule a variant of the
Bayesian update. First we perform a Bayesian update given
our (inaccurate) model, and then we add some noise (in par-
ticular, we mix the resulting belief state with the uniform dis-
tribution). Adding noise is crucial to our algorithm as it en-
sures the beliefs do not become incorrectly overly confident,
thus preventing the belief state from adapting fast enough to
new informative information.

Our main results show that if the model is only approxi-
mate then our modified Bayesian updates guarantee that the
true belief state and our belief state will not diverge — assum-
ing the value of observation is not negligible. More specifi-
cally, we show that if the initial state is approximately ac-
curate, then the expected KL-divergence between our belief
state and the true belief state remains small. We also show



that if we have an uninformative initial state (e.g., arbitrary
initial belief state) we will converge to a belief state whose
expected KL-divergence from the true belief state is small
and will remain as such from then on. Finally, we extend our
results to the setting considered in[Boyen & Koller, 1998],
where the goal is to compactly represent the belief state. The
precision and rate of convergence depends on the value of
observation.

One natural setting with an inaccurate model is when the
underlying environment is not precisely Markovian. For ex-
ample, it might be that the transition model is slightly influ-
enced by some other extrinsic random variables. Given these
extrinsic variables, the true transition model of the environ-
ment is only a slightly different model each time step. This
is a case where we might like to model the environment as
Markovian, even at the cost of introducing some error, due to
the fact that transition model is not entirely Markovian. Our
results apply also to this setting. This is an encouraging re-
sult, since in many cases the Markovian assumption is more
of an abstraction of the environment, then the a precise de-
scription.
Related Work. The work most closely related to ours is that
of Boyen and Koller (1998), where they considered monitor-
ing in a Hidden Markov Model. In their setting, the environ-
ment is (exactly) known and the agent wants to keep acom-
pact factored representation of the belief state (which may
not exactly have a factored form). Their main assumption is
that the environment is mixing rapidly, i.e the error contract
by geometric factor after each time we apply the transition
matrix operator. In contrast, we are interested in monitoring
when we have only anapproximateenvironment model. Both
our work and theirs assume some form of contraction where
beliefs tend to move closer to the truth under the Bayesian
updates — ours is through an assumption about the value of
observation while their is through assumption about the tran-
sition matrix. The main advantage of our method is that in
many applications one can improve the quality of its observa-
tions, by adding more and better sensors. However, the mix-
ing assumption used by Boyan and Koller may not be alter-
able. Furthermore, in the final Section, we explicitly consider
their assumption in our setting and show how a belief state
can be compactly maintained when both the model is approx-
imate and when additional error accumulates from maintain-
ing a compact factored representation.

Particle Filtering[Doucet, 1998] is a different monitoring
approach, in which one estimates the current belief state by
making a clever sampling, where in the limit one observes the
true belief state. The major drawback with this method is in
the case of a large variance where it requires many samples.
A combination of the former two methods was considered by
[Ng et al., 2002].

Building on the work of[Boyen & Koller, 1998] and the
trajectory tree of[Kearns et al., 2002], McAllester and Singh
(1999) provides an approximate planning algorithm. Similar
extensions using our algorithm may be possible.

Outline. The outline of the paper is as follows. In Sec-
tion 2 we provide notation and definitions. Section 3 is the
main section of the paper and deals with monitoring and is
composed from several subsections; Subsection 3.1 describes

the algorithm; Subsection 3.2 provides the main monitoring
theorem; Subsection 3.3 proves the Theorem. In Section 4,
we show how to extend the results into the dynamic Bayesian
networks.

2 Preliminaries
An Hidden Markov Model (HMM) is4-tuple,(S, P, Ob,O),
whereS is the set of states such that|S| = N , P is the
transition probability form every state to every state,Ob is
the observations set andO is the observation distribution in
every state. Abelief stateb is a distribution over the states
S such thatb(i) is the probability of being at statesi. The
transition probabilities of the belief states are defined accord-
ing to HMM transition and observation probability, using a
Bayesian update.

For a belief stateb(·), the probability of observingo is
O(o|b), where

O(o|b) =
∑

s

O(o|s)b(s).

After observing an observationo in belief stateb(·), the up-
dated belief state is:

(UO
o b)(s) =

O(o|s)b(s)
O(o|b)

whereUO
o is defined to be the observation update operator.

Also, we define the transition update operatorT as,

(TP b)(s) =
∑

s′
P (s′, s)b(s′).

We denote bybt the belief state at timet, where at time0 it
is b0. (We will discuss both the case that the initial belief state
is known and the case where it is unknown.) After observing
observationot ∈ Ob, the inductive computation of the belief
state for timet + 1 is:

bt+1 = TP UO
ot

bt,

where we first update the belief state by the observation up-
date operator according to the observationot and then by the
transition update operator. It is straightforward to consider
a different update order. Therefore,bt+1 is the distribution
over states conditioned on observing{o0, o1, . . . ot} and on
the initial belief state beingb0.

3 Approximate Monitoring
We are interested in monitoring the belief state in the case
where either our model is inaccurate or we do not have the
correct initial belief state (or both). Let us assume that an
algorithm has access to a transition matrixP̂ and an observa-
tion distributionÔ, which have error with respect to the true
models. The algorithm’s goal is to accurately estimate the
belief state at timet, which we denote bŷbt.

For notational simplicity, we defineEo∼b = Eo∼O(·|b).
WhenP and P̂ are clear from the context, we defineT to
be TP and T̂ to beT

bP . WhenO andÔ are clear from the
context, we defineUo to beUO

o andÛo to beU
bO

o .



Our main interest is the behavior of

E
[
KL(bt||b̂t)

]

where the expectation is taken with respect to observation se-
quences{o0, o1, . . . ot−1} drawn according to the true model,
andbt and b̂t are the belief states at timet, with respect to
these observation sequences.

In order to quantify the accuracy of our state monitoring,
we must assume some accuracy conditions on our approxi-
mate model. The KL-distance is the natural error measure.
The assumptions that we make now on the accuracy of the
model will later be reflected in the quality of the monitoring.

Assumption 3.1 (Accuracy) For a given HMM model
(S, P, Ob, O), an (εT , εO) accurate model is an HMM
(S, P, Ob, O), such that for all statess ∈ S,

KL(P (·|s)||P̂ (·|s)) ≤ εT

KL(O(·|s)||Ô(·|s)) ≤ εO .

Next we define the value of observation parameter.

Definition 3.1 Given an observation distributionO, let MO

be the matrix such that its(o, s) entry isO(o|s). TheValue
of Observation, γ, is defined asinfx:‖x‖1=1 ‖Mx‖1 and it is
in [0, 1].

Note that if the value of observation isγ, then for any two
belief statesb1 andb2,

‖b1 − b2‖1 ≥ ‖O(·|b1)−O(·|b2)‖1 ≥ γ‖b1 − b2‖1 .

where the first inequality follows from simple algebra.
The parameterγ plays a critical rule in our analysis. At

the extreme, whenγ = 1 we have‖b1 − b2‖1 = ‖O(·|b1) −
O(·|b2)‖1. Note that this definition is very similar to def-
inition of the Dobrushin coefficient,supb1,b2 ‖P (b1, ·) −
P (b2, ·)‖1 and it is widely used in the filtering literature
[Moral, 2004]. We now consider some examples.

Let γ be1 and considerb1 having support on one state and
b2 on another state. In this case‖b1 − b2‖1 = 2 and there-
fore ‖O(·|b1) − O(·|b2)‖1 = 2, which implies that we have
a different observations from the two states. Since this holds
for any two states, it implies that given an observation we can
uniquely recover the state. To illustrate the value observation
characterization, in POMDP terminology forγ = 1 we have
a fully observable MDP as no observation can appear with
positive probability in two states. At the other extreme, for an
unobservable MDP, we can not have a value ofγ > 0 since
‖O(·|b1)−O(·|b2)‖1 = 0 for any two belief statesb1 andb2.

Recall the example in the Introduction where at every state
the observation reveals the true state with probability1−ε and
with probability ε gives a random state. Here, it is straight-
forward to show thatγ is 1− ε. Hence, asε approaches0, the
value of observation approaches1.

We now show that having a value ofγ bounded away from
zero is sufficient to ensure some guarantee on the monitor-
ing quality, which improves asγ increases. Throughout, the
paper we assume thatγ > 0.

3.1 The Belief State Update
Now we present the belief state update. The naive approach
is to just use the approximate transition matrixP̂ and the ap-
proximate observation distribution̂O. The problem with this
approach is that the approximate belief state might place neg-
ligible probability on a possible state and thus a mistake may
be irreversible.

Consider the following update operatorT̃ . For each states
s ∈ S,

(T̃ )(s) = (1− εU )(T̂ )(s) + εUUni (s),
whereUni is the uniform distribution. Intuitively, this update
operatorŨ mixes with the uniform distribution, with weight
εU , and thus always keeps the probability of being in any state
bounded away from zero. Unfortunately, the mixture with
the uniform distribution is an additional source of inaccuracy
in the belief state, which our analysis would latter have to
account for.

The belief state update is as follows.

b̂t+1 = T̃ Ûot b̂t, (1)

whereb̂t is our previous belief state.

3.2 Monitoring the belief state
In this subsection we present our main theorem, which relates
the accuracy of the belief state to our main parameters: the
quality of the approximate model, the value of observation,
and the weight on the uniform distribution.

Theorem 3.2 At timet let b̂t be the belief state updated ac-
cording to equation (1),bt be the true belief state,Zt =
E

[
KL(bt||b̂t)

]
, andγ be the value of observation. Then

Zt+1 ≤ Zt + ε− αZ2
t ,

whereε = εT + εU log N + 3γ
√

εO andα = γ2

2 log2 N
εU

.

Furthermore, if‖b̂0 − b0‖1 ≤
√

ε
α then for all timest:

Zt ≤
√

ε

α
=

log N
εU

γ

√
2ε

Also, for any initial belief statesb0 and b̂0, andδ > 0, there
exists a timeτ(δ) ≥ 1, such that for anyt ≥ τ(δ) we have

Zt ≤
√

ε

α
+ δ =

log N
εU

γ

√
2ε + δ

The following corollary now completely specifies the algo-
rithm by providing a choice forεU , the weight of the uniform
distribution.
Corollary 3.3 Assume that‖b̂0 − b0‖1 ≤ √

ε
α and εU =

εT

log N . Then for all timest,

Zt ≤
6 log N

εT

γ

√
εT + γ

√
εO

Proof: With the choice ofεU , we have:
√

2ε =
√

4εT + 6γ
√

εO ≤ 3
√

εT + γ
√

εO.

And,

log
N

εU
= log

N log N

εT
≤ 2 log

N

εT
,

which completes the proof. ¤



3.3 The Analysis
We start by presenting two propositions useful in proving the
theorem. These are proved later. The first provides a bound
on the error accumulation.

Proposition 3.4 (Error Accumulation) For every belief states
bt and b̂t and updatesbt+1 = TUotbt and b̂t+1 = T̃ Ûot b̂t,
we have:

Eot

[
KL(bt+1||b̂t+1)

]
≤ KL(bt||b̂t) + εU log N + εO

−KL(O(·|bt)||Ô(·|b̂t))

The next proposition lower bounds the last term in Propo-
sition 3.4. This term, which depends in the value of obser-
vation, enables us to ensure that the two belief states will not
diverge.

Proposition 3.5 (Value of Observation) Letγ be the value of
observation,b1 and b2 be belief states such thatb2(s) ≥ µ
for all s. Then

KL(O(·|b1)||Ô(·|b2)) ≥ 1
2

(
γKL(b1||b2)

log 1
µ

)2

−3γ
√

εO + εO

Using these two propositions we can prove our main theo-
rem, Theorem 3.2.

Proof of Theorem 3.2: Due to the fact that̃U mixes with
the uniform distribution, we can takeµ = εU/N . Combining
Propositions 3.4 and 3.5, and recalling the definition ofε, we
obtain that:

Eot

[
KL(bt+1||b̂t+1)|ot−1, ..., o0

]
≤

KL(bt||b̂t) + ε− α
(
KL(bt||b̂t)

)2

By taking expectation with respect to{o0, o1, . . . ot−1}, we
have:

Zt+1 ≤ Zt + ε− αE

[(
KL(bt||b̂t)

)2
]

≤ Zt + ε− αZ2
t ,

where the last line follows since, by convexity,

E

[(
KL(bt||b̂t)

)2
]
≥

(
E

[
KL(bt||b̂t)

])2

,

which proves the first claim in the theorem.
We proceed with the case where the initial belief state is

good in the sense that‖b̂0 − b0‖1 ≤ √
ε
α . Then we have

thatZt is always less than
√

ε
α . The functionZt − αZ2

t + ε

has derivative1 − 2Ztα, which is positive whenZt ≤
√

ε
α .

SinceZt at
√

ε
α is mapped to

√
ε
α , then everyZt ≤

√
ε
α is

mapped to a smaller value. Hence theZt will always remain
below

√
ε
α .

We conclude with the subtle case of unknown initial belief
state, and define the following random variable

Z ′t =
{

Zt, Zt >
√

ε
α√

ε
α , Otherwise

Note thatZ ′t is a positive super-martingale and therefore
converges with probability1 to a random variableZ ′. The
expectation ofZ ′ cannot be larger than

√
ε
α , since whenever

Z ′ is larger than
√

ε
α its expectation in the next timestep is

strictly less than its expected value. Since by definitionZ ′t ≥
Zt then, regardless the our initial knowledge on the belief
state, the monitoring will be accurate and results in error less
than

√
ε
α . ¤

Error Accumulation Analysis
In this subsection we present a series of lemmas which prove
Proposition 3.4. The lemmas bound the difference between
the updates in the approximate and true model.

We start by proving the Lemma 3.8 provided at the begin-
ning of the Subsection

Lemma 3.6 For every belief statesb1 andb2,

KL(Tb1||T̂ b2) ≤ KL(b1||b2) + εT

Proof: Let us define the joint distributionsp1(s′, s) =
P (s, s′)b1(s) andp2(s′, s) = P̂ (s, s′)b2(s). Throughout the
proof we specifically denotes to be the (random) ’first’ state,
ands′ to be the (random) ’next’ state. By the chain rule for
relative entropy, we can write:

KL(p1||p2) = KL(b1||b2) + Es∼b[KL(T (·|s)||T̂ (·|s)]
≤ KL(b1||b2) + εT

where the last line follows by Assumption 3.1.
Let p1(s|s′) and p2(s|s′) denote the distributions of the

first state given the next state, underp1 andp2 respectively.
Again, by the chain rule of conditional probabilities we have,

KL(p1||p2) = KL(Tb1||T̂ab2)
+Es′∼Tb[KL(p1(s|s′)||p2(s|s′)]

≥ KL(Tb1||T̂ b2),

where the last line follows from the positivity of the relative
entropy. Putting these two results together leads to the claim.
¤

The next lemma bounds the effect of mixing with uniform
distribution.

Lemma 3.7 For every belief statesb1 andb2

KL(Tb1||T̃ b2) ≤ (1− εU )KL(Tb1||T̂ b2) + εU log N

Proof: By convexity,

KL(Tb1||T̃ b2) ≤ (1− εU )KL(Tb1||T̂ b2)
+εUKL(Tb1||Uni (·))

≤ (1− εU )KL(Tb1||T̂ b2)
+εU log N,

where the last line uses the fact that the relative entropy be-
tween any distribution and the uniform one is bounded by
log N . ¤

Combining these two lemmas we obtain the following
lemma on the transition model.



Lemma 3.8 For every belief statesb1 andb2,

KL(Tb1||T̃ b2) ≤ KL(b1||b2) + εT + εU log N

After dealing with transition model, we are left to deal with
the observation model. We provide an analog lemma with
regards to the observation model.

Lemma 3.9 For every belief statesb1 andb2,

Eo∼O(·|b1)
[
KL(Uob1||Ûob2)

]

≤ KL(b1||b2) + εO −KL(O(·|b1)||Ô(·|b2))

Proof: First let us fix an observationo. We have:

KL(Uob1||Ûob2) =
∑

s

Uob1(s) log
Uob1(s)

Ûob2(s)

=
∑

s

(Uob1)(s) log
O(o|s)b1(s)/O(o|b1)

Ô(o|s)b2(s)/Ô(o|b2)

=
∑

s

(Uob1)(s) log
b1(s)
b2(s)

− log
O(o|b1)

Ô(o|b2)

+
∑

s

(Uob1)(s) log
O(o|s)
Ô(o|s)

where the last line uses the fact thatO(o|b1) andÔ(o|b2) are
constants (with respect tos).

Now let us take expectations. For the first term, we have:

Eo∼b1

[∑
s

(Uob1)(s) log
b1(s)
b2(s)

]

=
∑

o

O(o|b1)

[∑
s

O(o|s)
O(o|b1)

b1(s) log
b1(s)
b2(s)

]

=
∑
s,o

O(o|s)b1(s) log
b1(s)
b2(s)

= KL(b1||b2)

where the last step uses the fact that
∑

o O(o|s) = 1. Simi-
larly, for the third term, it straightforward to show that:

Eo∼b1

[∑
s

(Uob1)(s) log
O(o|s)
Ô(o|s)

]

=
∑

o

O(o|b1)
∑

s

O(o|s)b1(s)
O(o|b1)

log
O(o|s)
Ô(o|s)

= Es∼b

[
KL(O(·|s)||Ô(·|s))

]

For the second term,

Eo∼b1

[
− log

O(o|b1)

Ô(o|b2)

]
= KL(O(·|b1)||Ô(·|b2))

directly from the definition of the relative entropy. The lemma
follows from Assumption 3.1. ¤

Now we are ready to prove Proposition 3.4.

Proof of Proposition 3.4: Using the definitions of updates
and the previous lemmas:

Eot∼bt

[
KL(bt+1||b̂t+1)

]

= Eot∼bt

[
KL(TUot

bt||T̃ Ûot
b̂t)

]

≤ Eot∼bt

[
KL(Uot

bt||Ûot
b̂t)

]
+ εT + εU log N

≤ KL(bt||b̂t) + εO −KL(O(·|bt)||Ô(·|b̂t))
+εT + εU log N

where the first inequality is by Lemma 3.8 and the second is
by Lemma 3.9 This completes the proof of Proposition 3.4.

¤
Value of Observation Proposition - The Analysis
The following technical lemma is useful in the proof and it
relates theL1 norm to the KL divergence.

Lemma 3.10 Assume that̂b(s) > µ for all s and thatµ < 1
2 .

Then

KL(b||b̂) ≤ ‖b− b̂‖1 log
1
µ

Proof: LetA be the set of states whereb is greater than̂b,
i.e.A = {s|b(s) ≥ b̂(s)}. So

KL(b||b̂) =
∑

s

b(s) log
b(s)

b̂(s)
≤

∑

s∈A
b(s) log

b(s)

b̂(s)

=
∑

s∈A
(b(s)− b̂(s)) log

b(s)

b̂(s)
+

∑

s∈A
b̂(s) log

b(s)

b̂(s)

≤ log
1
µ

∑

s∈A
(b(s)− b̂(s))

+
∑

s∈A
b̂(s) log

(
1 +

b(s)− b̂(s)

b̂(s)

)

≤ log
1
µ

∑

s∈A
(b(s)− b̂(s)) +

∑

s∈A
(b(s)− b̂(s))

=
1
2

(
log

1
µ

+ 1
)
‖b− b̂‖1

where we have used the concavity of the log function and
that

∑
s∈A(b(s)− b̂(s)) = 1

2‖b− b̂‖1. The claim now follows
using the fact thatµ < 1

2 . ¤
We are now ready to complete the proof. We will make

use of Pinsker’s inequality, which relates the KL divergence
to theL1 norm. It states that for any two distributionsp andq

KL(p||q) ≥ 1
2
(‖p− q‖1)2 . (2)

Proof of Proposition 3.5: By Pinsker’s inequality and As-
sumption 3.1, we have

‖O(·|s)−O(·|s)‖1 ≤
√

2KL(O(·|s)||Ô(·|s)) ≤ √
2εO

for all statess ∈ S. Using the triangle inequality,

‖O(·|b)−O(·|b̂)‖1 ≤ ‖O(·|b)−Ô(·|b̂)‖1+‖Ô(·|b̂)−O(·|b̂)‖1 .



Therefore,

‖O(·|b)− Ô(·|b̂)‖1 ≥ ‖O(·|b)−O(·|b̂)‖1
−‖Ô(·|b̂)−O(·|b̂)‖1

≥ γ‖b− b̂‖1 − ‖Ô(·|b̂)−O(·|b̂)‖1
≥ γ‖b− b̂‖1 −

√
2εO

where we used‖Ô(·|b̂) − O(·|b̂)‖1 ≤ maxs ‖O(·|s) −
O(·|s)‖1 and Pinsker’s inequality to bound‖Ô(·|b̂) −
O(·|b̂)‖1 ≤

√
2KL(Ô(·|b̂)||O(·|b̂)) .

Combing with Pinsker’s inequality, we have

KL(O(·|b)||Ô(·|b̂)) ≥ 1
2
(|O(·|b)− Ô(·|b̂)|1)2

≥ 1
2
(γ‖b− b̂‖1 −

√
2εO)2

≥ 1
2
(γ‖b− b̂‖1)2 − γ‖b− b̂‖1

√
2εO

+εO

≥ 1
2
(γ‖b− b̂‖1)2 − 2γ

√
2εO + εO

≥ 1
2

(
γKL(b||b̂)

log 1
µ

)2

− 3γ
√

εO + εO

where the before last inequality follows from‖b − b̂‖1 ≤ 2
and the last inequality from Lemma 3.10. ¤

4 Extension to DBNs

In many application one of the main limitations is the rep-
resentation of the state which can grow exponentially in
the number of state variables. Dynamic Bayesian Networks
[Dean & Kanazawa, 1989] have compact representation of
the environment. However, the compact representation of the
network does not guarantee that one can represent compactly
the belief state.

The factored representation can be thought as having an
update of the following form

b̃t+1 = HT̂ Ûob̃t, (3)

whereH projects the belief state into the closest point in the
factored representation space. Next we adopt the following
definition from[Boyen & Koller, 1998] regarding the quality
of the factored representation.

Definition 4.1 An approximatioñb of b̂, incurs errorε if rel-
ative to true belief stateb we have

KL(b||b̂))−KL(b||b̃) ≤ εp

Armed with these definitions one can prove an equivalent
Theorem to Theorem 3.2 with respect toKL(b̃t||bt). Due
to lack of space and the similarity to the previous results we
omit them.

5 Conclusions and Open Problems
In this paper we presented a new parameter in HMM, which
governs how much information the observation convey. We
showed how one can do fairly good monitoring in absence of
an accurate model/unknown starting state/compcat represen-
tation as long as the HMM’ observations are valuable. An
open question that remains is whether the characterization
can be made weaker and still an agent would be able to track,
for instance if in most states the observations are valuable but
there are few in which they are not, can we still monitor the
state? Another very important research direction is that of
planning in POMDPs. Our results show that one can monitor
the belief state of the agent, however this is not enough for
the more challenging problem of planning, where one should
also decide which actions to take. It is not clear whether our
characterization can yield approximate planning as well. The
major problem with planning is that of taking the best ac-
tion w.r.t to a distribution over states can lead to disastrous
state and one should look into the long term implications of
her actions due to the uncertainty. We leave these interesting
problems to future work.
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