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Abstract

We present ExprGen, a system to automatically generate
3D stylized character expressions from humans in a per-
ceptually valid and geometrically consistent manner. Our
multi-stage deep learning system utilizes the latent vari-
ables of human and character expression recognition con-
volutional neural networks to control a 3D animated char-
acter rig. This end-to-end system takes images of human
faces and generates the character rig parameters that best
match the human’s facial expression. ExprGen generalizes
to multiple characters, and allows expression transfer be-
tween characters in a semi-supervised manner. Qualitative
and quantitative evaluation of our method based on Me-
chanical Turk tests show the high perceptual accuracy of
our expression transfer results.

1. Introduction

Our work is motivated by the goal of enhancing animated

storytelling by improving 3D stylized character facial ex-

pressions. The importance of believable and accurate ani-

mated character facial expressions is readily demonstrated

by films and games such as Polar Express [47] and Mass

Effect: Andromeda [2]. In these examples, it is difficult for

the audience to connect to the characters and broader story-

line, because the characters do not exhibit clearly recogniz-

able facial expressions that are consistent with their emo-

tional state in the storyline [39, 34]. Characters must have

perceptually valid expressions, that are clearly perceived by
humans to be in the intended expression class. Fig. 1 shows

a concrete example of a perceptually invalid expression, in

which the human expression did not transfer correctly to the

character when tested on Mechanical Turk (MT) for expres-

sion clarity with 30 test subjects.

Animator-created character expressions can be expres-
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Figure 1: Example of inaccurate expression transfer. (a) Expres-

sion transfer from human (top right) to a character [17]. (b) Me-

chanical Turk testers perceive the human expression as sadness,

while the character expression is perceived as neutral and a mix-

ture of other expressions. The character expression has neither

expression clarity nor geometric consistency.

sive and clear but require expertise and hours of work. In

order to speed up the animation process, animators often

use human actors to control and animate a 3D stylized char-

acter using a facial performance capture system. These sys-

tems often lack the expressive quality and perceptual valid-

ity of animator-created animations, mainly due to their as-

sumption that geometric markers are sufficient for expres-

sion transfer. The geometry-based methods and retarget-

ing [26] based on handcrafted descriptors may be unable to

take into account the perception of the intended expression

when transferred onto a stylized character. We are unaware

of any tools or methods that support animators by validating

the perception of character expressions during creation. De-

spite recent advances in modeling capabilities, motion cap-

ture and control parameterization, current methods do not

address the fundamental problem of creating clear expres-

sions that humans recognize as the intended expression.

Our goal is to learn 3D stylized character expressions

from humans in a perceptually valid and geometrically con-
sistent manner. To this end, we propose an end-to-end sys-
tem, ExprGen, that takes a 2D image of a human and pre-

dicts the 3D rig parameters of a character. This is a chal-

lenging goal because there is no existing dataset mapping
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Layer type Filter size Stride Output

CONV-1 11x11 1 64x256x256

CONV-2 1x1 2 64x128x128

CONV-3 5x5 1 64x128x128

CONV-4 1x1 2 64x64x64

CONV-5 5x5 1 64x64x64

CONV-6 1x1 2 64x32x32

CONV-7 3x3 1 64x32x32

CONV-8 1x1 2 64x16x16

CONV-9 3x3 1 64x16x16

CONV-10 1x1 2 64x8x8

CONV-11 3x3 1 64x8x8

Avg. Pooling-12 8x8 1 64x1x1

FC-13 1x7

FC-14 1x7

Table 1: HCNN and SCNN network architecture

produce parameters for a primary character expression in

3D including both perceptual and geometric similarity, and

transfer the expression of a primary character to multiple

secondary characters. We build a multi-stage deep learn-

ing system ExprGen with two major components: Training

from 2D Datasets (Sec. 4.1) and 3D Expression transfer.

3D Expression transfer is composed of two separate compo-

nents: Human to Character transfer (Sec. 4.2.1) and Char-

acter to Character transfer (Sec. 4.2.2).

4.1. Training from 2D Datasets

The goal of this step is to learn a joint embedding be-

tween human and primary character expressions based on

perception and geometry. Our approach is inspired by the

recent success of CNNs to learn the image similarity based

on Pseudo-Siamese networks [8, 45]. We extend this con-

cept for expression similarity application by fusing the per-

ceptual and geometric features of humans and characters.

We train a Pseudo-Siamese network called the fused-CNN

(f-CNN) with two branches, Human CNN (HCNN) and

Shared CNN (SCNN). We first train the HCNN on the hu-

man expression dataset (HED) to classify an input human

face image into one of the seven expression classes. Then,

we initialize the weights of the SCNN with those of HCNN,

except for the Fully Connected (FC) layers and train the

SCNN on FERG-DB by transfer learning [43]. In this pro-

cess, the last layer of the HCNN is fine-tuned with FERG-

DB (for every character) by continuing the backpropaga-

tion learning step, creating a shared embedding feature

space. The network structures for the HCNN and SCNN are

given in Table 1. We did not find any significant improve-

ment with more layers or higher dimensionality of fully-

connected layers.

After the network branches are trained to recognize the

expressions on humans and characters independently, we

concatenate the outputs from their average pooling layers

and send it to a network of two FC layers to form f-CNN as

SCNN
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HCNN

F
u
ll
y
C
o
n
n
ec
te
d

F
u
ll
y
C
o
n
n
ec
te
d

CED

HED Similarity
score

Figure 3: The HCNN and SCNN are fused together to form the

f-CNN, which is trained to produce a similarity score between hu-

man and primary character expressions.

(a) Input (b) E+ (c) E-(geometry) (d) E-(perception)

Figure 4: Comparison of best matches for training the f-CNN

based on geometry and perception. (a) Human input (E), (b) Posi-

tive match (E+), (c) Negative match with incorrect geometry (E-),

(d) Negative match with incorrect perception (E-).

shown in Fig. 3. To train the f-CNN, we introduce a simi-

larity measure based on the distance between two image en-

codings as follows. After the HCNN predicts the perceptual

expression label of the human input image, the FERG-DB

is searched to retrieve the character images having the same

predicted label. Then, the Euclidean distance between the

geometric feature vector of the human image and those of

all the retrieved character images are computed and ordered

based on the distance to the human image. Note that we

did not always find perfect matches. However, our dataset

is large enough to enable the CNNs to learn generalizable

matching representations between human and character im-

ages. To solve the issue of incorrect geometry match within

the same expression class, triplets (E,E+, E−) of training
images are created where:

1. E is a reference human expression image.
2. E+ is a character image similar to the reference human
expression image (best geometry match in the search).

3. E- is another image that is not geometrically and/or per-
ceptually similar to the reference human expression im-

age. For example, if E is an open mouth joy human ex-

pression, then character anger retrieval would be incor-

rect perceptually and closed mouth human joy would be

incorrect geometrically as shown in Fig. 4.

The f-CNN takes a human expression image and primary

character expression image and produces a similarity score

by minimizing a loss function consisting of a hinge-based

163



loss term and a squared L2-norm regularization term [36]:

minw

N∑

i=1

max(0, 1− liy
net
i ) +

λ

2
‖w‖2 (1)

where yneti is the network output for the ith training sam-
ple, li ∈ {−1, 1} is the corresponding label (with +1 and -1
denoting a non-matching and a matching pair, respectively)

and w are the weights of the neural network. The hinge

loss minimizes the distance between E and E+ (matching

both geometry and perception) and maximizes the distance

between E and E- (mismatching the geometry and/or per-

ception). Similar to the approach described in [36], triplets

are generated online by selecting the hard positive/negative

exemplars from within a mini-batch for our training. The

softmax layer at the end of f-CNN converts the similarity

score to binary classification (similar or dissimilar).

4.2. 3D Expression Transfer

This step generates perceptually valid 3D characters

from images of human expressions. It is divided into two

stages: expression transfer from human to a primary char-

acter rig and expression transfer from primary to secondary

character rigs. The stages are described as follows:

4.2.1 Human to Character Transfer

The f-CNN can be used to retrieve the matching 2D char-

acter expressions; however, it requires a database of charac-

ter images. We aim to control the primary rig by produc-

ing rig parameters for any given human image. To control

the rig in 3D, we train another CNN called the 3D-CNN

which has the same configuration as shown in Table 1 ex-

cept for the dimensionality of the FC layers. Instead of

seven probabilities for classifying seven expression classes,

the final output is the parameters for the primary character.

We initialize the weights of the 3D-CNN by trained HCNN

weights so that we can transfer the knowledge learned from

the HED, and the model does not overfit the 3D-parameters

dataset. The pairs of a human input image and the 3D-

parameters corresponding to the 2D character image with

similar expression (as obtained at the output of f-CNN) are

used for training the 3D-CNN (Fig. 2(d)).

All the networks are trained end-to-end using the Torch

framework [10] until convergence using stochastic gradient

descent with hyper parameters (momentum of 0.9, weight

decay of 0.0005 and a batch size of 50) on a single NVIDIA

GTX-1080 GPU. In order to make sure that the pre-trained

weights are not drastically changed, the learning rate for the

SCNN, f-CNN and 3D-CNN is set lower (0.0001) than that

of the HCNN (0.001). The learning rate was dropped by a

factor of 10 after every 10 epochs of training. Batch nor-

malization was applied [20] after every convolutional layer

to reduce the internal-covariate-shift, ReLU as the activa-

tion function and drop out with the drop-out ratio of 0.2.

To avoid overfitting, our training data is augmented by hor-

izontal flipping, rotating, and random cropping followed by

scaling. We used an 80:10:10 split for training, validation

and test sets, and performed 5-fold cross validation.

4.2.2 Character to Character Transfer

ExprGen is trained for a primary character rig, and we

propose a lightweight alternative to training a different net-

work for each new secondary character as shown in Fig

2(e-g). Due to the absence of one-to-one correspondence

between the facial control points on different rigs, manual

mapping of the rig parameters is often not possible. Our

character-to-character expression transfer model aims at au-

tomatically learning a function to map the 3D-parameters

of the primary character to the secondary characters. For

each secondary character we create a separate multilayer

perceptron (MLP), which is a one-hidden-layer neural net-

work withM input nodes, N output nodes and 1
2 (M +N)

hidden nodes with tanh activation, whereM and N are the

number of 3D-parameters of the primary and the secondary

characters respectively. Gradient descent is used with a

mini-batch size of 10 and a learning rate of 0.005 to min-

imize the square loss between the input and output param-

eters. These networks (together called C-MLP) are trained

in parallel and then augmented at the end of the 3D-CNN to

map the input human expression simultaneously on multi-

ple stylized characters.

We obtained pairs of training examples for the C-MLP

by using a combination of two distance measures: dgeometry
and dperception. dgeometry = ||fg

p − fg
s ||2 is the Euclidean

distance between the geometric feature vectors of the pri-

mary (fg
p ) and secondary character (f

g
s ) image pairs, while

dperception = ||fp
p − fp

s ||2 is the Euclidean distance between
the perceptual feature vectors (fp

p and fp
s ) of the image

pairs. The perceptual features are obtained by extracting

the output of the last FC layer of the SCNN and normaliz-

ing it by the softmax weight as done in [3]. Given a primary

character with an expression to find on a secondary charac-

ter in FERG-DB (on which our SCNN is trained), all sec-

ondary character images in the CED having the same per-

ceptual label as the primary character image are retrieved

and ordered by the smallest value of dgeometry; the image
with smallest distance value is returned. If the secondary

character is not in FERG-DB, based on empirical evidence,

the images of the secondary character for the perceptual la-

bels having the two highest probabilities are retrieved and

the combined function 1
2 (dperception + dgeometry) is used to

order them for retrieval. This methodology produces a set

of matching (primary character, secondary character) pairs,

for which we have both images and the 3D parameters that
can be used to generate the 3D meshes from which those
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(a) Human expression sequence

(b) Primary character ‘Mery’

(c) Primary character ‘Ray’
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(d) Plot showing percentage of 30 MT test subjects recognizing the correct expression on human and the character ‘Mery’

Figure 5: Human to primary character expression transfer for human expression transition from neutral to joy, from neutral to surprise,

from neutral to sadness, and from neutral to anger based on both perceptual and geometric similarity. (a) Human input expression frames

(1-12), (b) Mapped expressions on ‘Mery’, and (c) Mapped expressions on ‘Ray’, (d) Expression recognition results between human (solid

lines) and transferred expressions on ‘Mery’ (dashed lines) for different expressions.

images are derived. The pairs of corresponding parame-

ters are used to train the C-MLP. Once trained, the C-MLP

transforms the 3D parameters of a primary character into

the corresponding 3D parameters of a secondary character.

5. Results
We evaluated the performance of our system by com-

puting the expression recognition accuracies of the HCNN

and SCNN independently, testing the human-to-character

expression transfer perceptual accuracy and comparing our

results with Faceware (commercial product). In all the sub-

sequent figures and tables, we show the 2D rendered images

of 3D character rigs and use the following notation for the

expression classes - A: anger, D: disgust, F: fear, J: joy, N:

neutral, Sa: sadness, Su: surprise.

5.1. Expression Recognition Accuracy

We first evaluated the HCNN and SCNN for the expres-

sion recognition task using the HED and CED in a 10-fold

cross-validation setting. The HCNN and SCNN obtained

average accuracies of 89.71% and 96.82%, respectively. We

note that our classification networks perform better than the

prior networks trained for a similar classification task [3]

because of training the HCNN on an additional dataset to

learn the features in the wild. The accuracy of our net-

works increased by about 5% when we did not apply the

max pooling step after every convolution layer, indicating

that average pooling after all the convolution layers helps

the network to preserve the facial appearance and subtle dis-

tinctions between each expression, which is lost when max

pooling is applied after every convolution. However, our

focus is not on the classification accuracy of the trained net-

works, but on using them to produce 3D-rig parameters. In

the remaining experiments we use these networks to learn

the expression feature space for humans and stylized char-

acters and use their weights to initialize our final 3D-CNN.

5.2. Human to Character Expression Transfer

To evaluate our results for clarity in expression recogni-

tion and perceptual accuracy of the transferred expression,

we asked 30 MT test subjects to recognize the input human

expression and the generated primary character expression

(output of 3D-CNN) for 1000 expression transfer results

(approx. 150 for each expression class) on different styl-

ized characters.

We computed the clarity of expression recognition on

human and characters independently by comparing the per-

ceived expressions with the ground truth labels. The aver-

age expression recognition accuracies for humans and char-

acters are shown in Table 2. We observe that the character

expression recognition accuracies are higher than humans,

since the characters have simpler geometry and stylization

can make the expressions relatively easier to perceive. Sur-

prise and joy show high accuracy, while disgust and fear are
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Class A D F J N Sa Su

Human 76.27 63.81 68.47 94.31 78.03 72.95 92.26

Character 90.45 72.89 79.16 96.39 84.38 79.44 94.87

Table 2: Average (%) expression recognition accuracy for 2D im-

ages of human and stylized character expressions when compared

with the ground truth labels respectively. Note that the characters

have higher expression clarity than humans due to their simpler

geometry.

���������	�
�������	���������	���
� � � � � �� ��

��
��
��
��
�	

�
�
��
	

�
��
��
���

�	
��

�

� ����� ����� 	�
� ��		 ���� ���� ��		
� �
��� ����	 
��� ���� 
��� ���� ����
� ���� ��
� �
��� ���� ���� ���� �����
� ���� ���� ���� ����� ���� ���� ���	
� ���� ���� ���� 
��	 ����� ����� ����
�� ���� ���� ���� ���� ����� ����� ����
�� ��	� ���
 ���� ��		 ��	� ��	� �����

Figure 6: Confusion matrix for perceived transferred expression

recognition (%) for seven expression classes.

more difficult for humans to both perceive and act out.

To test the accuracy of the expression transfer we com-

pared human expressions to that of the generated primary

character. We used the perceived label (as perceived by

MT subjects) of the human as the ground truth and the per-

ceived label of the character as the predicted output in its

human-character-transfer pair. Fig. 6 shows the confusion

matrix for transferred expression recognition for each ex-

pression class. For a given row (e.g. anger), the columns

represent the percentage (averaged over all the perceived

human anger expressions) of MT subjects agreeing on the

corresponding expression classes for the transferred char-

acter expressions. The values show that ExprGen results in

accurate transfer of expressions for most of the classes with

an average correct perceptual recognition rate of 75.55%.

The most common errors are confusion between disgust and

anger, between fear and surprise, and between neutral and

sadness. These errors are intuitively reasonable since the

confused expressions have similar-looking geometric con-

figurations. The least accurate expression transfer was for

disgust and fear but as Table 2 shows, these expressions are

difficult to recognize for both human and character images.

5.2.1 Single Human to Multiple Characters

ExprGen generates expressions for multiple characters

with high perceptual validity. The expression transfer re-

sults from a human to two stylized characters are shown

in Fig.5, which shows the generalizability of our algorithm

in generating the same expressions on different characters

having annotated training data. We tested the expression

recognition on input human expressions and transferred ex-

(a) Input human images

(b) Output ‘Aia’ expression results

Figure 7: Consistent human expression transfer to primary char-

acter. This example shows (a) six different human images with the

joy expression (b) transfered to the primary character ‘Aia’.
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Figure 8: Quantitative comparison of expression transfer results of

Faceware (blue bars) and ExprGen (red bars).

pressions using 30 MT test subjects. The plot shown in Fig.

5 (d) shows high correlation betweenMT agreement for rec-

ognized expressions on ‘Mery’ (Fig. 5 (b)), which confirms

the accurate perception of the intended expression transfer.

We obtained a very similar plot for ‘Ray’ (Fig. 5 (c)).

5.2.2 Multiple Humans to a Single Character

We generated the same expression class on a single pri-

mary character from different human inputs as illustrated in

Fig. 7, showing that our algorithm is consistent in trans-

ferring the expressions even when there is variation in the

human input examples.

5.2.3 Comparison with Faceware

ExprGen generates expressions with greater perceptual

validity than popular commercially available software pack-

ages. We compared ExprGen with the award-winning Face-

ware technology [18], because it is the only feasible and

comparable system that has the same input and output

modality as ExprGen. Faceware includes Analyzer to con-
vert human facial performance from a sequence of input im-

ages into motion capture data and Retargeter to map the
captured data to the blendshapes of the 3D character face

rig by manually creating an expression set for the charac-

ter. Fig. 8 shows the comparison of average scores obtained

for different expression classes when 30 MT test subjects

were asked to rate the closeness of the expression gener-

ated on the character to the input human expression on a

scale of 1-5, with 5 being the closest match. The average

score over all classes for ExprGen is 4.31 versus an average

score of 3.68 for Faceware. Fig. 9 shows the expression
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Input Faceware ExprGen

(a) Input expression: disgust

Input Faceware ExprGen

(b) Input expression: fear

Figure 9: Qualitative comparison of expression transfer results

of Faceware and ExprGen (left to right: input human expression,

Faceware output and ExprGen output).

transfer results of Faceware and ExprGen for two cardinal

expressions. These results show that blendshape-mapping-

based approaches often produce incorrect expressions (see

Fig. 9(a)) or ambiguous expressions (see Fig. 9(b)) owing

to the limitations of correspondence mapping. We did not

compare with the results of Faceshift Studio [17], since it

requires a depth camera to capture human facial motion and

uses a different approach compared to our 2D human image

to 3D stylized character rig mapping.

5.3. Character to Character Expression Transfer

In order to evaluate the performance of our character-

to-character expression model, we selected ‘Mery’ as the

primary character, ‘Bonnie’ as the existing secondary char-

acter (present in FERG-DB) and ‘Tuna’ and ‘Cody’ (non-

human) as the new secondary characters (not present in

FERG-DB). Fig. 10 (a) shows six randomly chosen cardinal

expressions on the primary character used as test cases, and

Fig. 10 (b), (c) and (d) show the facial expressions gener-

ated on the secondary characters at the output of the C-MLP.

The results show that our network accurately learns the rela-

tionship between the 3D parameters of the characters, while

maintaining the clarity of the expressions. Our network pro-

duces surprisingly good results for non-human characters as

well, though the C-MLP is trained on only the key poses.

However, the training examples for new secondary charac-

ters are critical to this approach, and there are two issues in

selecting accurate training examples. First, when the new

secondary character expression is perceptually valid but a

similar expression does not exist for the primary character

in the database (see Fig. 11 (a)), our method retrieves the

closest possible match which may be inaccurate. Second,
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