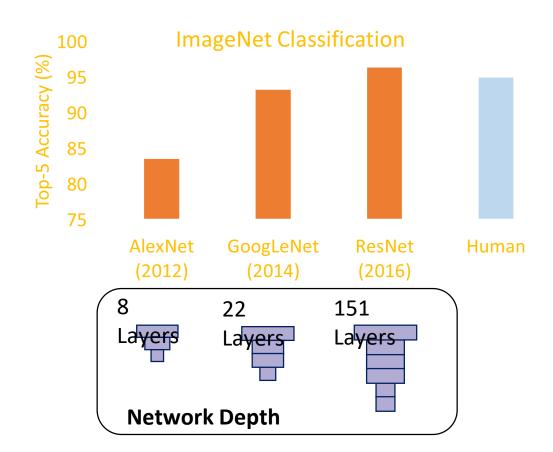
Neural Networks

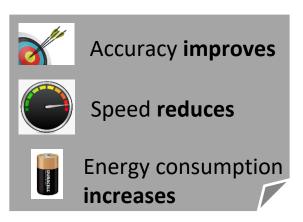
Nov 2022 Beibin Li

Summary

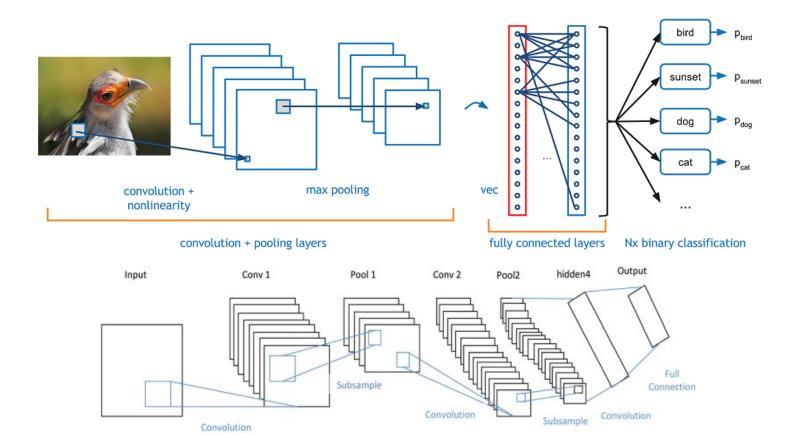
- CNN
 - Image Classification
 - Segmentation, Detection, Generation
- RNN
- Transformer
- RL
- PyTorch

Introduction





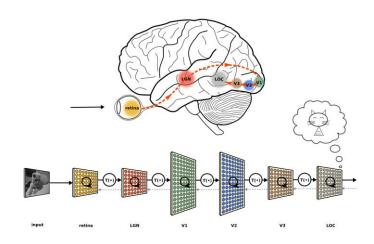
CNN



Convolution Operation

Kernel (3 × 3) Output (7×7)

Nowadays, we learn kernels from the data.

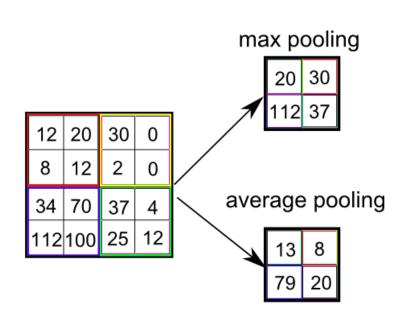


Learning

- Details:
- https://www.slideshare.net/EdwinEfranJimnezLepe/example-feedforward-backpropagation
- https://medium.com/@2017csm1006/forward-and-backpropagation-in-convolutional-neural-network-4dfa96d7b37e

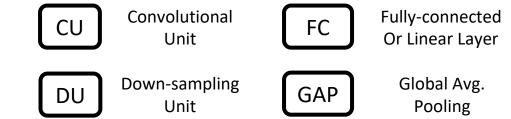
Pooling

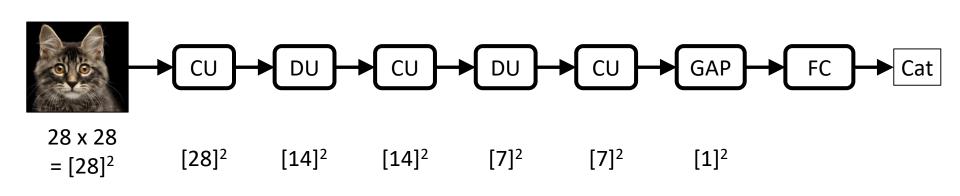
e.g. kernel size = 2, stride = 2 for both width and height.



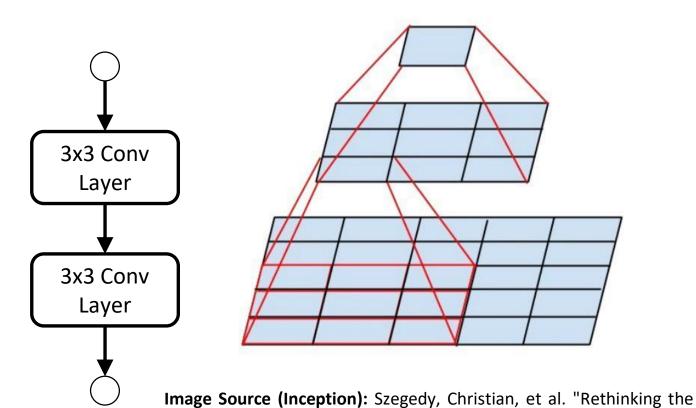
CNN Structures Image Classification

Image Classification





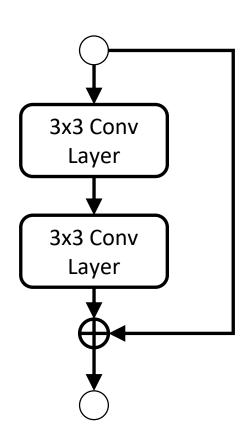
Convolutional Unit (CU) - VGG



inception architecture for computer vision." CVPR. 2016.

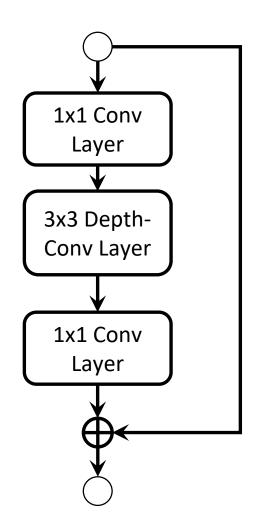
3x3 conv, 64 Size:224 3x3 conv, 64 pool/2 Size:112 3x3 conv, 128 3x3 conv, 128 pool/2 3x3 conv, 256 Size:56 3x3 conv, 256 3x3 conv, 256 pool/2 Size:28 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 pool/2 3x3 conv, 512 Size:14 3x3 conv, 512 3x3 conv, 512 pool/2 Size:7 fc 4096 fc 4096 fc 4096

Basic Block in ResNet



ResNet: He, Kaiming, et al. "Deep residual learning for image recognition." CVPR. 2016.

- Residual Connection
- Element-wise addition of input and output
- Improves gradient flow and accuracy
- In ResNet-18 and ResNet-34
- Still computationally expensive
 - Hard to train very deep networks (> 100 layers)



Bottleneck in ResNet

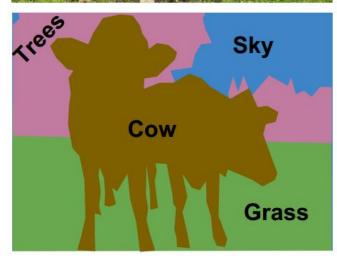
- Used in ResNet-50, ResNet-101, ResNet-152, etc...
- Computationally Efficient

Influence:

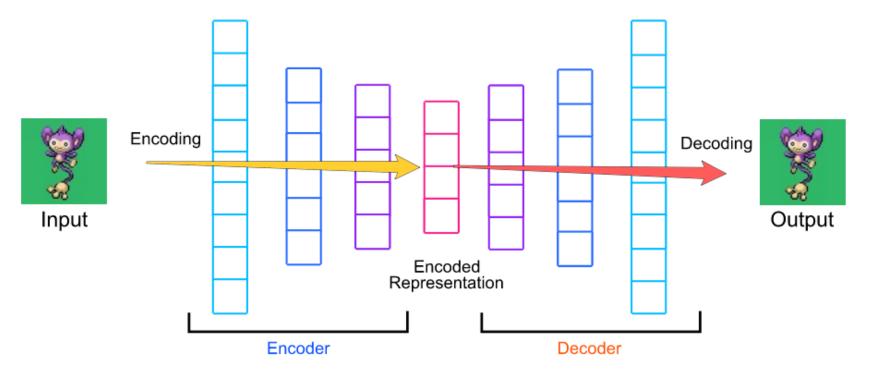
- Bottleneck unit with Depth-wise convs
 - MobileNetv2
 - ShuffleNetv2
- MobileNetv2: Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." CVPR, 2018.
- **ShuffleNetv2:** Ma, Ningning, et al. "Shufflenet v2: Practical guidelines for efficient cnn architecture design." ECCV, 2018.

CNN Structures Segmentation, Detection, Generation

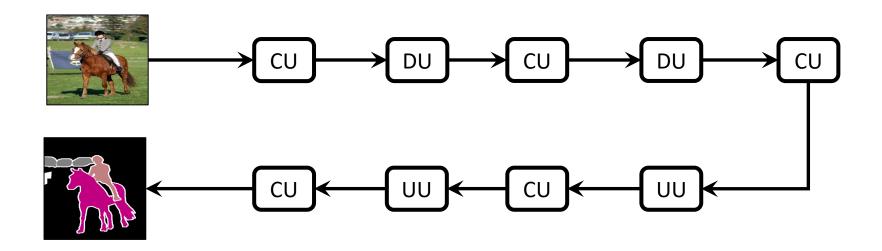




Encoder-Decoder



Encoder-Decoder in Semantic Segmentation



CU Convolutional Unit

FC

Fully-connected Or Linear Layer

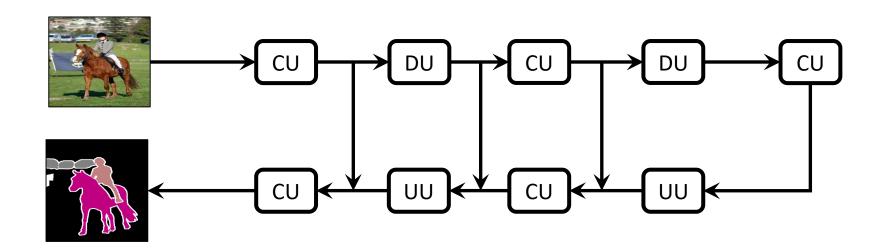
DU

Down-sampling Unit

GAP

Global Avg. Pooling

U-Net



UU Up-sampling Unit

CU Convolutional Unit

FC

Fully-connected Or Linear Layer

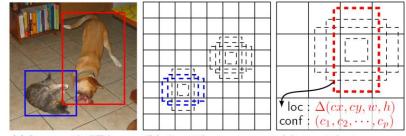
DU

Down-sampling Unit

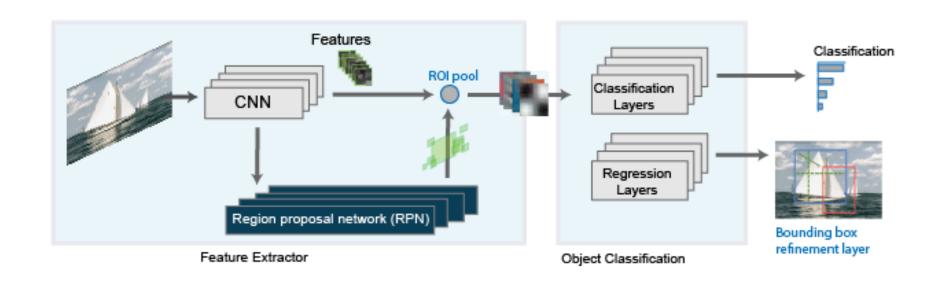
GAP

Global Avg. Pooling

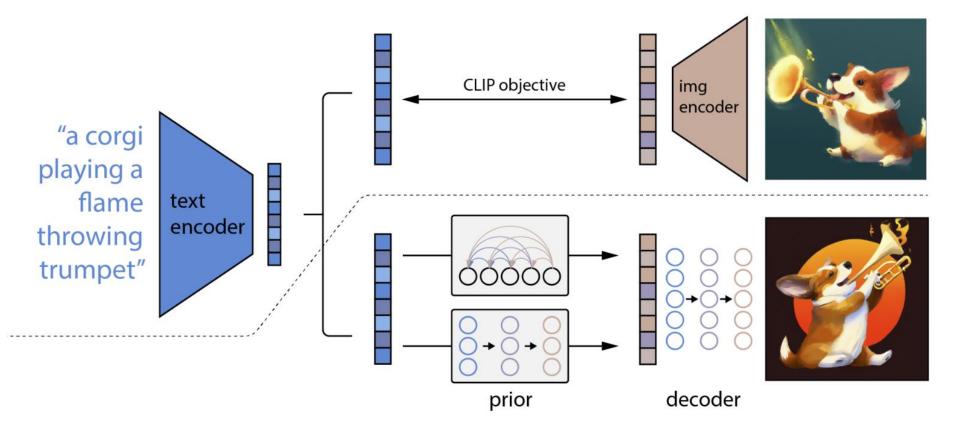
Faster R-CNN



(a) Image with GT boxes (b) 8×8 feature map (c) 4×4 feature map



Diffusion (DALL-E 2)



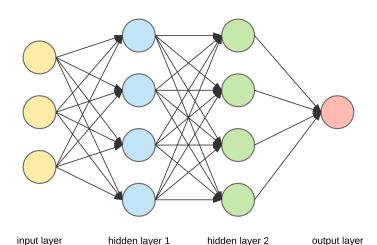
RNN Structures

Challenges for time-series signals

- Different signal length
- Online inference for new timepoint

(Vanilla) Neural Network

1940s - 1980s

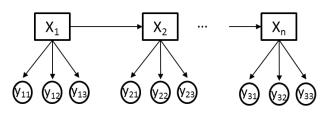


Hidden Markov Model

Andrew Viterbi, 1967 Lawrence Rabiner, 1989

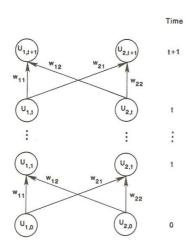
X_t: hidden state variables

y_{ti}: ith observed variable @ t

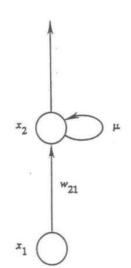


Learning internal representations by error propagation

Rumelhart, Hinton, and Williams (1985)

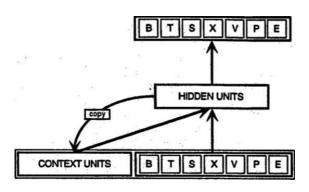


A parallel distributed processing approach Jordan (1986)

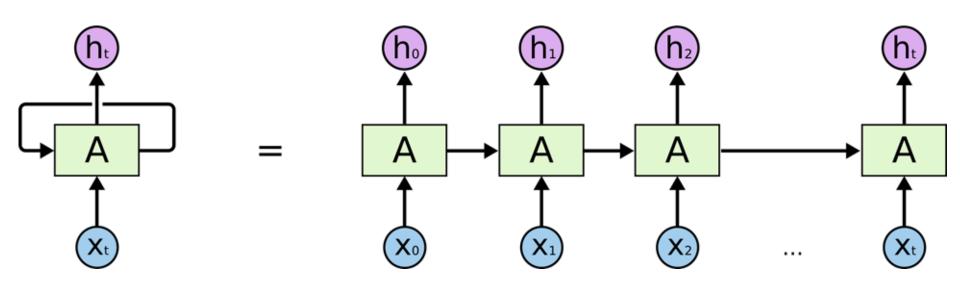


Graded state machines

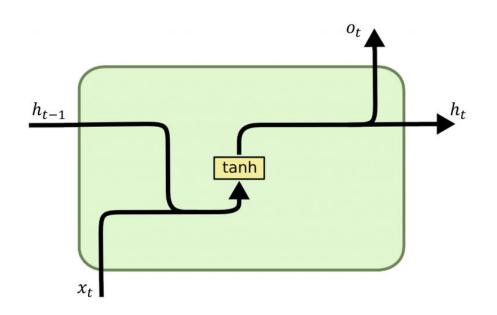
Servan-Schreiber, Cleeremans, and McClelland (1991)



Recurrent Neural Network



Parameters in Recurrent Neural Network



 x_t : input vector $(m \times 1)$.

 h_t : hidden layer vector $(n \times 1)$.

 o_t : output vector $(n \times 1)$.

 b_h : bias vector $(n \times 1)$.

U, W: parameter matrices $(n \times m)$.

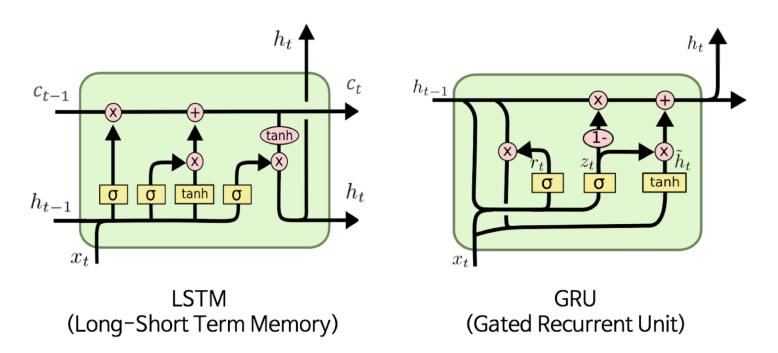
V: parameter matrix $(n \times n)$.

 σ_h, σ_y : activation functions.

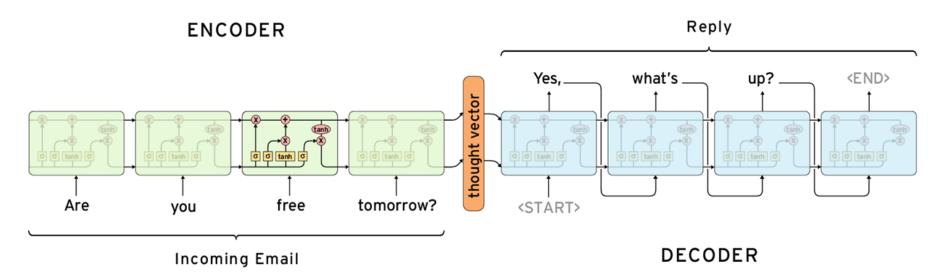
$$h_t = \sigma_h(i_t) = \sigma_h(U_h x_t + V_h h_{t-1} + b_h)$$

$$y_t = \sigma_y(a_t) = \sigma_y(W_y h_t + b_h)$$

LSTM and GRU: Memory for RNNs

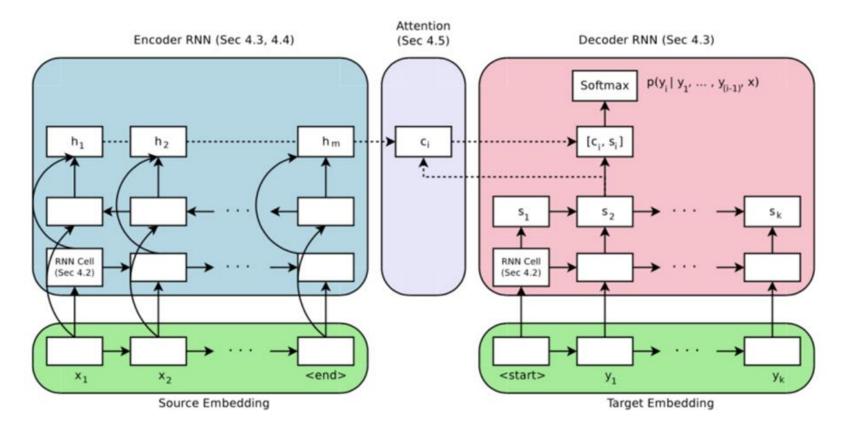


Seq-2-Seq



- Encoder maps a variable-length source sequence (input) to a fixed-length vector
- Decoder maps the vector representation back to a variable-length target sequence (output)
- Two RNNs are trained jointly to maximize the conditional probability of the target sequence given a source sequence

Seq-2-Seq with Attention



Transformer

Limitations of CNN and RNN

- 1. "Locality" of the convolution operation
 - Reduce dimension (compared to fully-connected layers) while maintaining useful local information
 - b. It could NOT see two pixels that are far away

- 1. "Recurrentness" of recurrent neural network
 - a. It can take an input with arbitrary size (length)
 - b. "Vanishing of gradient" problem when sequence length is too long (during backpropagation)

Well, forget about convolution and recurrent

[→] IS ALL YOU NEED

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research

University of Toronto llion@google.com aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

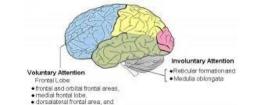
Illia Polosukhin* ‡ illia.polosukhin@gmail.com

Aidan N. Gomez* †

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 Englishto-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

What is attention?



Bahdanau, Cho, Bengio, 2015, ICLR

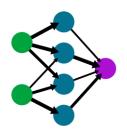
Psychology



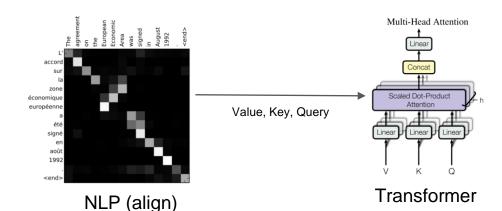
Eye-tracking

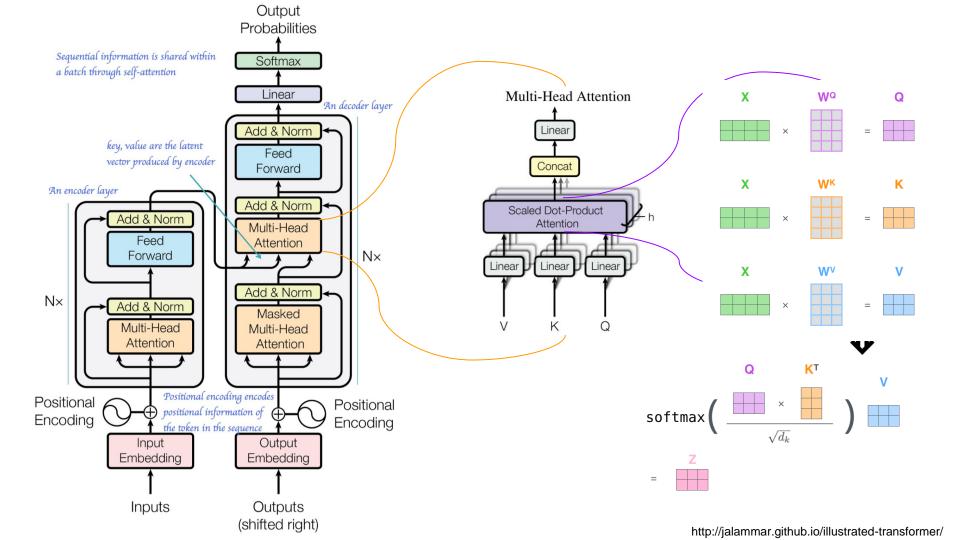
Computer Vision (Saliency Map)

Computer Vision (Backpropagation)

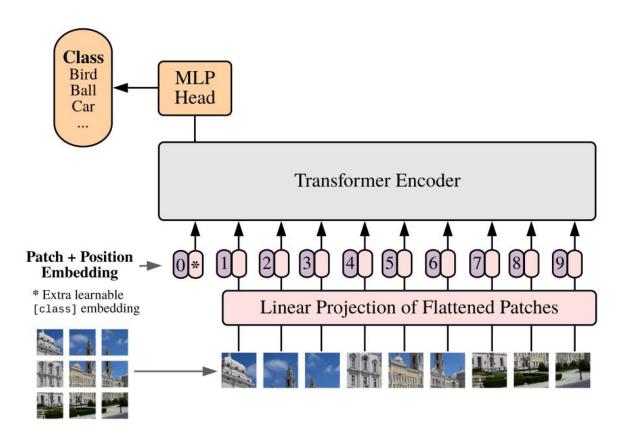


Neural Network (weights)





Vision Transformer



Limitations of Transformer

- 1. It cannot learn hierarchical features efficiently (while CNN can)
- 2. It cannot model periodic finite-state language (while RNN can)
- 3. It requires lots for computer memory
 - a. Solution: efficient transformers, e.g., BigBird, Longformer, etc.
- 4. It requires more training data than CNN/RNN
 - a. Not a big problem for natural images
 - b. Solution: smarter architecture design and learning paradigms for low-resource datasets
 - c. Solution: self-supervised learning, transfer learning, etc.

NN for RL

Which Direction

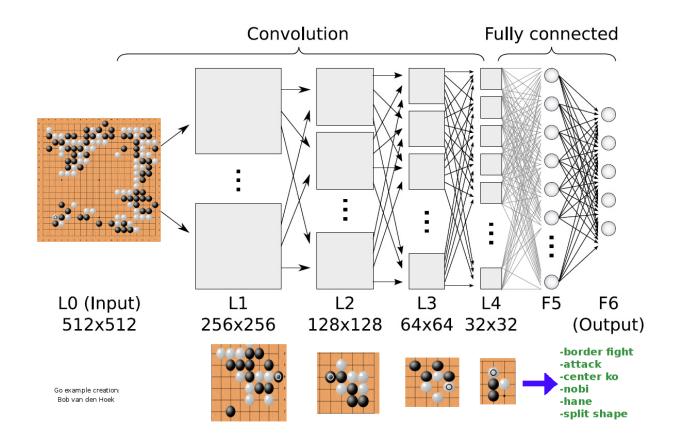
Regression:

Angle = $[-540^{\circ}, 540^{\circ}]$

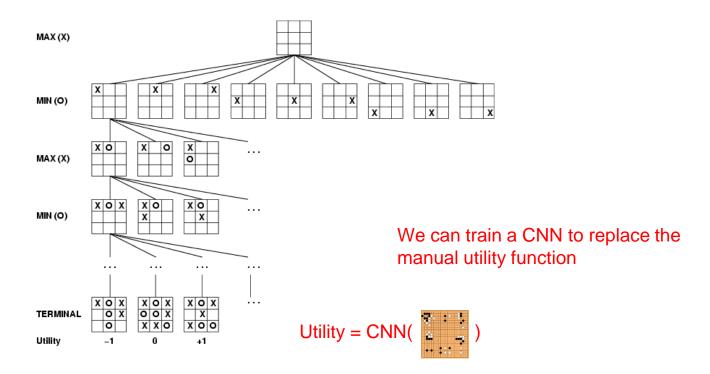
Classification:

- Turn left
- Turn right
- Stay Still

Which Move



Design Utility Function

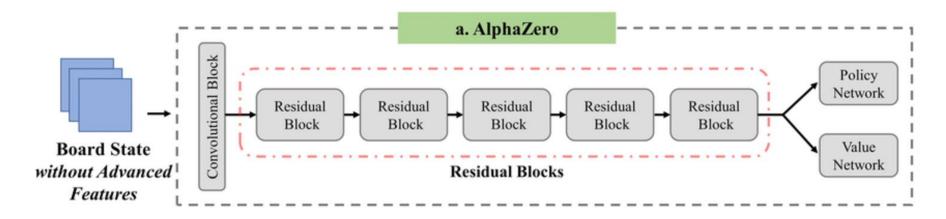


AlphaZero

ResNet backbone

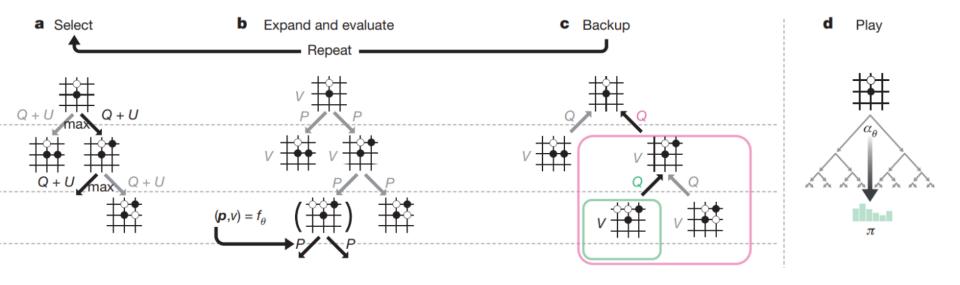
Policy Network

Value Network

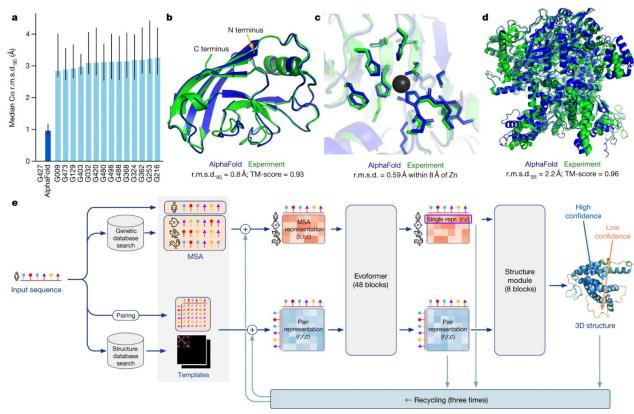


Monte Carlo Tree Search

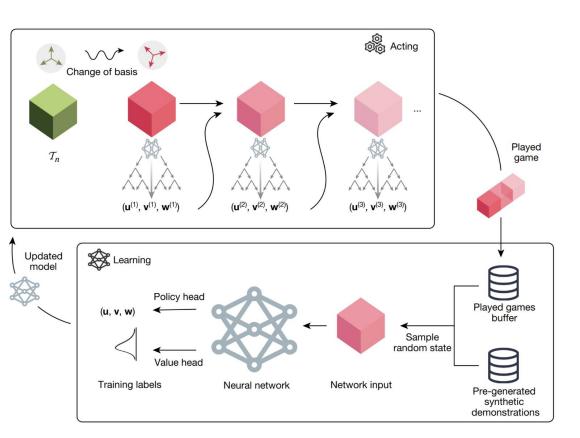
Active Learning to balance Exploration v.s. Exploitation

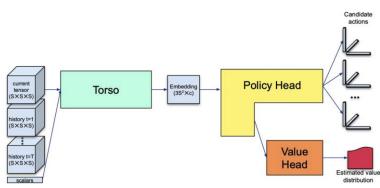


Alpha Fold



RL Applications: Alpha Tensor





Intro to PyTorch

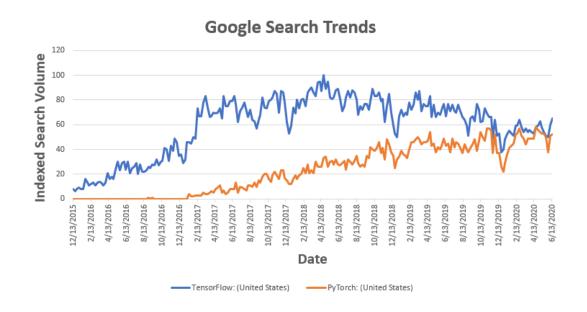
Deep Learning Libraries

mxnet

theano

Deep Learning Frameworks

- Before 2012: custom C++, MatLab, R, Lua, ... code.
 - Only limited libraries/functions
 - You need to do most things yourself
- MXNet (2015)
- TensorFlow (2015)
- Caffee (2015)
- Torch (2002): Lua
- PyTorch (2016)



Why PyTorch

- Autograd
- Dynamic computational graph
- Debugging is easier!
- Data Parallelism (multiple GPU)
- Pythonic-syntax (Python)
- Multiple language support: Python, C++, Java
- Many more!

Model Definition

```
import torch.nn.functional as F
class Net(nn.Module):
    def __init__(self):
        super(Net, self). init ()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
net = Net()
```

import torch.nn as nn

Training a model

```
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
    # get the inputs
    inputs, labels = data
    # zero the parameter gradients
    optimizer.zero_grad()
    # forward + backward + optimize
    outputs = net(inputs)
    loss = criterion(outputs, labels)
   loss.backward()
    optimizer.step()
    # print statistics
    running loss += loss.item()
    if i % 2000 == 1999: # print every 2000 mini-batches
        print('[%d, %5d] loss: %.3f' %
              (epoch + 1, i + 1, running_loss / 2000))
        running_loss = 0.0
```

Homework 4

Convolutional Neural Networks

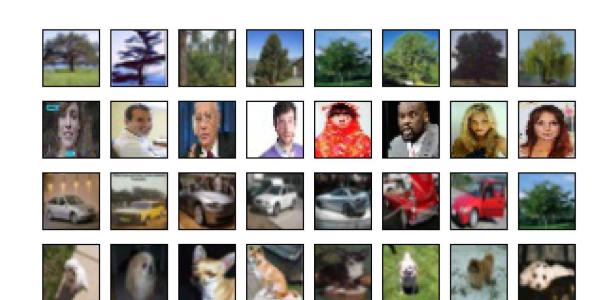
In PyTorch

Which Object?

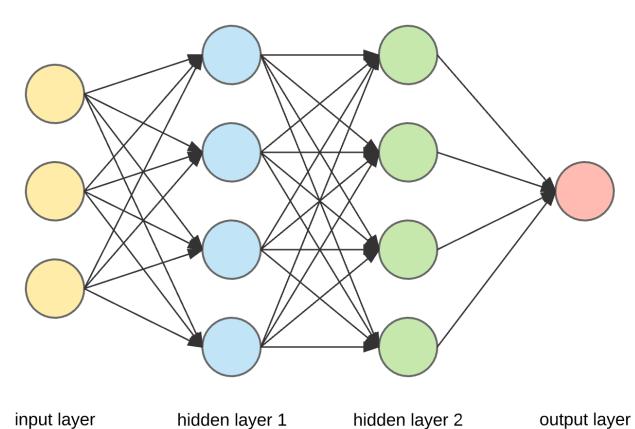
Image Classification:

- Tree
- Face
- Car
- Dog
- Plane

Training set: 90 images per cls Testing set: 10 images per cls



Neural Network (Q1)



input layer hidden layer 1 hidden layer 2

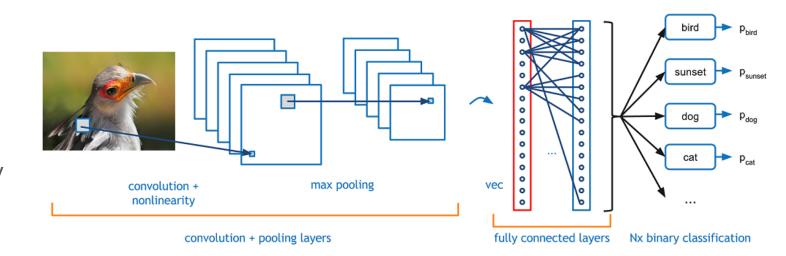
Convolutional Neural Network (Q2)

Conv

Pool

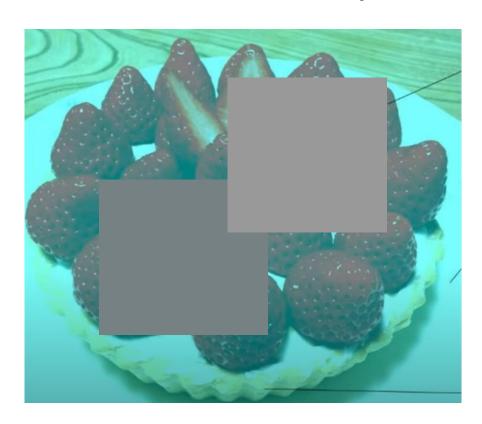
FC

Cross Entropy

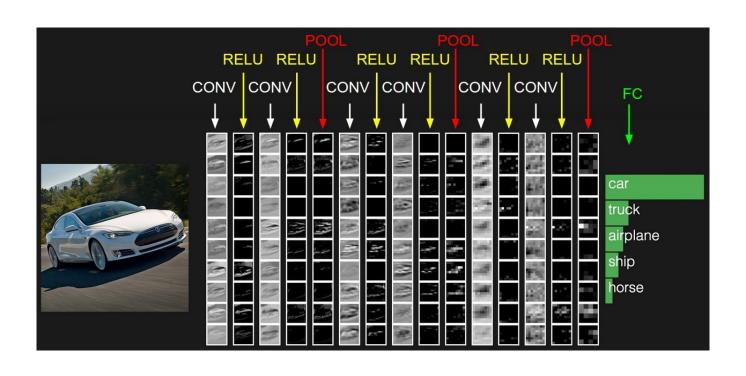


Color Normalization (Q3)

What's the Color of the Strawberry



Deep Convolutional Neural Network (Q4)



Make the Design More Flexible

Input:

[8, 16, 32, "pool"]

Layer	Output Size	Output Channels
Input	30 x 30	3
Conv	28 x 28	8
ReLU	28 x 28	8
Conv	26 x 26	16
ReLU	26 x 26	16
Conv	24 x 24	32
ReLU	24 x 24	32
Max Pool	12 x 12	32
Linear	5	

Data Augmentation (Q5)

Random Affine Transformation

