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Game Playing

Why do AI researchers study game playing?

1. It’s a good reasoning problem, formal and nontrivial.

2. Direct comparison with humans and other computer

programs is easy.



2

What Kinds of Games?

Mainly games of strategy with the following 

characteristics:

1. Sequence of moves to play

2. Rules that specify possible moves

3. Rules that specify a payment for each 

move

4. Objective is to maximize your payment
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Games vs. Search Problems

• Unpredictable opponent → specifying a 

move for every possible opponent reply

• Time limits → unlikely to find goal, must 

approximate
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Opponent’s Move

Generate New Position

Generate Successors

Game

Over?

Evaluate Successors

Move to Highest-Valued Successor

Game

Over?

no

no yes

yes

Two-Player Game
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Game Tree (2-player, 

Deterministic, Turns)

The computer is Max.

The opponent is Min.

At the leaf nodes, the

utility function

is employed. Big value

means good, small is bad.

computer’s

turn

opponent’s

turn

computer’s

turn

opponent’s

turn

leaf nodes

are evaluated
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Mini-Max Terminology

• utility function: the function applied to leaf nodes

• backed-up value

– of a max-position: the value of its largest successor

– of a min-position: the value of its smallest successor

• minimax procedure: search down several levels; 

at the bottom level apply the utility function, 

back-up values all the way up to the root node, 

and that node selects the move.
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Minimax

• Perfect play for deterministic games

•

• Idea: choose move to position with highest minimax 

value

= best achievable payoff against best play

•

• E.g., 2-ply game:

•
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Minimax Strategy

• Why do we take the min value every other 
level of the tree?

• These nodes represent the opponent’s 
choice of move.

• The computer assumes that the human 
will choose that move that is of least value
to the computer.
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Minimax algorithm
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Tic Tac Toe

• Let p be a position in the game

• Define the utility function f(p) by

– f(p) =

• largest positive number if p is a win for computer

• smallest negative number if p is a win for opponent

• RCDC – RCDO 

– where RCDC is number of rows, columns and 

diagonals in which computer could still win

– and RCDO is number of rows, columns and diagonals 

in which opponent could still win.
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Sample Evaluations

• X = Computer; O = Opponent

O     

X   

X     O

rows

cols

diags

O  O  X 

X   X   

X     O

rows

cols

diags
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Sample Evaluations

• X = Computer; O = Opponent

O     

X   

X     O

rows

cols

diags

O  O  X 

X   X   

X     O

rows

cols

diags
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Minimax is done depth-first

max

min

max

leaf

2       5        1
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Properties of Minimax

• Complete? Yes (if tree is finite)

• Optimal? Yes (against an optimal opponent)

• Time complexity? O(bm)

• Space complexity? O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈100 for "reasonable" games

→ exact solution completely infeasible

Need to speed it up.
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Alpha-Beta Procedure

• The alpha-beta procedure can speed up a 

depth-first minimax search.

• Alpha: a lower bound on the value that a 

max node may ultimately be assigned

• Beta: an upper bound on the value that a 

minimizing node may ultimately be 

assigned

v > 

v < 



16

α-β pruning example
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α-β pruning example

alpha cutoff

 = 3
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α-β pruning example
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α-β pruning example
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α-β pruning example
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Alpha Cutoff

> 3

3

8 10

 = 3

What happens here? Is there an alpha cutoff? NO
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Beta Cutoff

< 4

4

 = 4

> 8

8  cutoff
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Alpha-Beta Pruning

≥4

5    2   10   11   1   2   2      8     6    5     12       4    3      25    2

2

max

min

max

eval

5

≤5

≥10

β cutoff

5

≥5

≤2
α cutoff

12

≤12

≤4
α cutoff

5
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Properties of α-β

• Pruning does not affect final result. This means that it 
gets the exact same result as does full minimax.

•

• Good move ordering improves effectiveness of pruning

•

• With "perfect ordering," time complexity = O(bm/2)
→ doubles depth of search

• A simple example of the value of reasoning about which 
computations are relevant (a form of metareasoning)

•
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The α-β algorithm

cutoff
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The α-β algorithm

cutoff
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When do we get alpha cutoffs?

...100

< 100 < 100
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Shallow Search Techniques

1. limited search for a few levels

2. reorder the level-1 sucessors

3. proceed with - minimax search
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Additional Refinements

• Waiting for Quiescence: continue the search 
until no drastic change occurs from one level to 
the next.

• Secondary Search: after choosing a move, 
search a few more levels beneath it to be sure it 
still looks good.

• Book Moves: for some parts of the game 
(especially initial and end moves), keep a 
catalog of best moves to make.
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Evaluation functions

• For chess/checkers, typically linear weighted sum of 

features

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

• e.g., w1 = 9 with 

f1(s) = (number of white queens) – (number of black 

queens), etc.
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Example: Samuel’s Checker-

Playing Program

• It uses a linear evaluation function

f(n) = a1x1(n) + a2x2(n) + ... + amxm(n)

For example:  f = 6K + 4M + U

– K = King Advantage

– M = Man Advantage

– U = Undenied Mobility Advantage (number of 

moves that Max has that Min can’t jump after)
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Samuel’s Checker Player

• In learning mode

– Computer acts as 2 players: A and B

– A adjusts its coefficients after every move

– B uses the static utility function

– If A wins, its function is given to B
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Samuel’s Checker Player

• How does A change its function?

1. Coefficent replacement

(node ) = backed-up value(node) – initial value(node)

if      > 0  then terms that contributed positively are 
given more weight and terms that contributed 
negatively get less weight

if      < 0 then terms that contributed negatively are 
given more weight and terms that contributed 
positively get less weight
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Samuel’s Checker Player

• How does A change its function?
2. Term Replacement

38 terms altogether

16 used in the utility function at any one time

Terms that consistently correlate low with the 
function value are removed and added to the end of 
the term queue.

They are replaced by terms from the front of the 
term queue.
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Kalah

P’s holes

p’s holes

KP Kp
6          6          6           6          6            6

6           6          6         6          6          6

0 0

To move, pick up all the stones in one of your holes, and

put one stone in each hole, starting at the next one, 

including your Kalah and skipping the opponent’s Kalah.

counterclockwise
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Kalah

• If the last stone lands in your Kalah, you get 

another turn.

• If the last stone lands in your empty hole, take all 

the stones from your opponent’s hole directly 

across from it and put them plus your last stone 

in your Kalah.

• If all of your holes become empty, the opponent 

keeps the rest of the stones.

• The winner is the player who has the most 

stones in his Kalah at the end of the game.
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Kalah

P’s holes

p’s holes

KP Kp
6          6          6           6          6            6

0           7          7         7          7          7

0 7

To move, pick up all the stones in one of your holes, and

put one stone in each hole, starting at the next one, 

including your Kalah and skipping the opponent’s Kalah.

counterclockwise
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Kalah

P’s holes

p’s holes

KP Kp
7          7          7           7          7            7

0           7          7         7          7          0

0 8

To move, pick up all the stones in one of your holes, and

put one stone in each hole, starting at the next one, 

including your Kalah and skipping the opponent’s Kalah.

counterclockwise



39

Kalah

P’s holes

p’s holes

KP Kp
N          *          *           *          *            *

13          *          *         *          *           *

* *

To move, pick up all the stones in one of your holes, and

put one stone in each hole, starting at the next one, 

including your Kalah and skipping the opponent’s Kalah.

counterclockwise
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Kalah

P’s holes

p’s holes

KP Kp
N+1 *+1       *+1      *+1       *+1        *+1

1 *+1       *+1      *+1      *+1      *+1

* *+1

To move, pick up all the stones in one of your holes, and

put one stone in each hole, starting at the next one, 

including your Kalah and skipping the opponent’s Kalah.

counterclockwise
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Cutting off Search

MinimaxCutoff is identical to MinimaxValue except
1. Terminal? is replaced by Cutoff?

2. Utility is replaced by Eval

Does it work in practice?

bm = 106, b=35 → m=4

4-ply lookahead is a hopeless chess player!

– 4-ply ≈ human novice

– 8-ply ≈ typical PC, human master

– 12-ply ≈ Deep Blue, Kasparov
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Deterministic Games in Practice

• Checkers: Chinook ended 40-year-reign of human world champion 
Marion Tinsley in 1994. Used a precomputed endgame database 
defining perfect play for all positions involving 8 or fewer pieces on 
the board, a total of 444 billion positions.

»

»

• Chess: Deep Blue defeated human world champion Garry Kasparov 
in a six-game match in 1997. Deep Blue searches 200 million 
positions per second, uses very sophisticated evaluation, and 
undisclosed methods for extending some lines of search up to 40 
ply.

•

• Othello: human champions refuse to compete against computers, 
who are too good.

•

• Go: human champions refuse to compete against computers, who 
are too bad. In go, b > 300, so most programs use pattern 
knowledge bases to suggest plausible moves.

•
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Games of Chance

• What about games that involve chance, 

such as 

– rolling dice

– picking a card

• Use three kinds of nodes:

– max nodes

– min nodes

– chance nodes

   min

chance

max
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Games of Chance

c

d1
di dk

S(c,di)

chance node with

max children

expectimax(c) = ∑P(di)  max(backed-up-value(s))

i s in S(c,di)

expectimin(c’) = ∑P(di)  min(backed-up-value(s))

i        s in S(c,di)
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Example Tree with Chance

 

3  5   1  4   1   2  4   5

.4     .6      .4       .6

.4        .6

max

chance

min

chance

max

leaf

1.2
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Example Tree with Chance

 

3  5   1  4   1   2  4   5

.4     .6      .4       .6

.4        .6

max

chance

min

chance

max

leaf

1.2
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Complexity

• Instead of O(bm), it is O(bmnm) where n is 

the number of chance outcomes.

• Since the complexity is higher (both time 

and space), we cannot search as deeply.

• Pruning algorithms may be applied.
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Summary

• Games are fun to work on!

•

• They illustrate several important points about AI.

•

• Perfection is unattainable → must approximate.

• Game playing programs have shown the world 

what AI can do.


