
1

Informed (Heuristic) Search

Idea: be smart

about what paths

to try.

2

Blind Search vs. Informed Search

• What’s the difference?

• How do we formally specify this?

A node is selected for expansion based on

an evaluation function that estimates cost

to goal.

3

General Tree Search Paradigm

function tree-search(root-node)

fringe successors(root-node)

while (notempty(fringe))

{node remove-first(fringe)

state state(node)

if goal-test(state) return solution(node)

fringe insert-all(successors(node),fringe) }

return failure

end tree-search

root-node

successors list

How do we order the successor list?

4

Best-First Search

• Use an evaluation function f(n) for node n.

• Always choose the node from fringe that

has the lowest f value.

3 5 1

4 6

5

Heuristics

• What is a heuristic?

rule of thumb

• What are some examples of heuristics we
use?

• We’ll call the heuristic function h(n).

6

Greedy Best-First Search

• f(n) = h(n)

• What does that mean?

• What is it ignoring?

path cost so far

Romanian Route Finding

• Problem

– Initial State: Arad

– Goal State: Bucharest

– c(s,a,s´) is the length of the road from s to s´

• Heuristic function: h(s) = the straight line

distance from s to Bucharest

7

Original Road Map of Romania

8
What’s the real shortest path from Arad to Bucharest?

What’s the distance on that path? 418

Greedy Search in Romania

9

140

99

211
Distance = 450

10

Greedy Best-First Search

• Is greedy search optimal?

• Is it complete?

No, can get into infinite loops in tree search.

Graph search is complete for finite spaces.

• What is its worst-case complexity for a tree

search with branching factor b and maximum

depth m?

– time

– space

O(bm)

O(bm)

Greedy Best-First Search

• When would we use greedy best-first

search or greedy approaches in general?

– Fast

– Simple

– Approximate

11

12

A* Search

• Hart, Nilsson & Rafael 1968

– Best-first search with f(n) = g(n) + h(n)

where g(n) = sum of edge costs from start to n

and h(n) = estimate of lowest cost path n-->goal

– If h(n) is admissible then search will find optimal

solution.

{
Space bound since the queue must be maintained.

13

Back to Romaniasta
rt

end

14

A* for Romanian Shortest Path

15

f(n) = g(n) + h(n)

140

118

75

16

17

18

19

20

8 Puzzle Example

• f(n) = g(n) + h(n)

• What is the usual g(n)?

• two well-known h(n)’s

– h1 = the number of misplaced tiles

– h2 = the sum of the distances of the tiles from

their goal positions, using city block distance,

which is the sum of the horizontal and vertical

distances (Manhattan Distance)

1

21

8 Puzzle Using Number of

Misplaced Tiles

2 8 3

1 6 4

7 5

1 2 3

8 4

7 6 5

goal

g=0

h=4

f=4

2 8 3

1 4

7 6 5

2 8 3

1 6 4

7 5

2 8 3

1 6 4

7 5

22

8 Puzzle Using Number of

Misplaced Tiles

2 8 3

1 6 4

7 5

1 2 3

8 4

7 6 5

goal

g=0

h=4

f=4

2 8 3

1 4

7 6 5

2 8 3

1 6 4

7 5

2 8 3

1 6 4

7 5

23

2 8 3

1 4

7 6 5

Exercise:

What are its children and their

f, g, h?

24

2 8 3

1 4

7 6 5

Exercise:

What are its children and their

f, g, h?

25

Optimality of A* with Admissibility

(h never overestimates the cost to the goal)
Suppose a suboptimal goal G2 has been generated and

is in the queue. Let n be an unexpanded node on the

shortest path to an optimal goal G1.

G1

n

G2

f(n) = g(n) + h(n)

< g(G1) Why?

< g(G2) G2 is suboptimal

= f(G2) f(G2) = g(G2)

So f(n) < f(G2) and A* will never select

G2 for expansion.

admissibility

Optimality of A* with

Consistency (stronger condition)

• h(n) is consistent if

– for every node n

– for every successor n´ due to legal action a

– h(n) <= c(n,a,n´) + h(n´)

• Every consistent heuristic is also

admissible.
26

n

n´ G

c(n,a,n´)
h(n´)

h(n)

27

Algorithms for A*

• Since Nillsson defined A* search, many different
authors have suggested algorithms.

• Using Tree-Search, the optimality argument
holds, but you search too many states.

• Using Graph-Search, it can break down,
because an optimal path to a repeated state can
be discarded if it is not the first one found.

• One way to solve the problem is that whenever
you come to a repeated node, discard the longer
path to it.

28

The Rich/Knight Implementation

• a node consists of

– state

– g, h, f values

– list of successors

– pointer to parent

• OPEN is the list of nodes that have been generated and

had h applied, but not expanded and can be

implemented as a priority queue.

• CLOSED is the list of nodes that have already been

expanded.

29

Rich/Knight

1) /* Initialization */

OPEN <- start node

Initialize the start node

g:

h:

f:

CLOSED <- empty list

30

Rich/Knight

2) repeat until goal (or time limit or space limit)

• if OPEN is empty, fail

• BESTNODE <- node on OPEN with lowest f

• if BESTNODE is a goal, exit and succeed

• remove BESTNODE from OPEN and add it to

CLOSED

• generate successors of BESTNODE

31

Rich/Knight

for each successor s do

1. set its parent field

2. compute g(s)

3. if there is a node OLD on OPEN with
the same state info as s

{ add OLD to successors(BESTNODE)

if g(s) < g(OLD), update OLD and

throw out s }

32

Rich/Knight/Tanimoto
4. if (s is not on OPEN and there is a node

OLD on CLOSED with the same state

info as s

{ add OLD to successors(BESTNODE)

if g(s) < g(OLD), update OLD,

remove it from CLOSED

and put it on OPEN, throw out s

}

33

Rich/Knight

5. If s was not on OPEN or CLOSED

{ add s to OPEN

add s to successors(BESTNODE)

calculate g(s), h(s), f(s) }

end of repeat loop

NOTE

• A student pointed out to me last time that with

Prof. Tanimoto’s modification,

• Keeping the lists successors(BESTNODE) for

every node did not seem necessary

• We went over it and decided it was only used in

the Rich/Knight implementation when they

modified a whole subtree under a node, which

the Tanimoto modification avoids.

• It could be used for debugging, however.

• It does not hurt. I had it in my code; he did not.
34

35

The Heuristic Function h

• If h is a perfect estimator of the true cost then A* will
always pick the correct successor with no search.

• If h is admissible, A* with TREE-SEARCH is guaranteed
to give the optimal solution.

• If h is consistent, too, then GRAPH-SEARCH is optimal.

• If h is not admissable, no guarantees, but it can work
well if h is not often greater than the true cost.

Complexity of A*

• Time complexity is exponential in the length of
the solution path unless for “true” distance h*
|h(n) – h*(n)| < O(log h*(n))

which we can’t guarantee.

• But, this is AI, computers are fast, and a good
heuristic helps a lot.

• Space complexity is also exponential, because it
keeps all generated nodes in memory.

Big Theta notation says 2 functions have about the same growth rate.

Why not always use A*?

• Pros

– optimal solution

– easy to code

• Cons

– space

Solving the Memory Problem

• Iterative Deepening A*

• Recursive Best-First Search

• Depth-First Branch-and-Bound

• Simplified Memory-Bounded A*

Iterative-Deepening A*
• Like iterative-deepening depth-first, but...

• Depth bound modified to be an f-limit

– Start with f-limit = h(start)

– Prune any node if f(node) > f-limit

– Next f-limit=min-cost of any node pruned

a

b

c

d

e

f

FL=15
FL=21

Recursive Best-First Search

• Use a variable called f-limit to keep track of the
best alternative path available from any ancestor
of the current node

• If f(current node) > f-limit, back up to try that
alternative path

• As the recursion unwinds, replace the f-value of
each node along the path with the backed-up
value: the best f-value of its children

Simplified Memory-Bounded A*

• Works like A* until memory is full

• When memory is full, drop the leaf node with the

highest f-value (the worst leaf), keeping track of

that worst value in the parent

• Complete if any solution is reachable

• Optimal if any optimal solution is reachable

• Otherwise, returns the best reachable solution

43

Performance of Heuristics

• How do we evaluate a heuristic function?

• effective branching factor b*

– If A* using h finds a solution at depth d using

N nodes, then the effective branching factor is

b* where N = 1 + b* + (b*)2 + . . . + (b*)d

• Example: depth 0

d=2 depth 1

b=3 depth 2

44

Table of Effective Branching Factors

b d N

2 2 7

2 5 63

3 2 13

3 5 364

3 10 88573

6 2 43

6 5 9331

6 10 72,559,411

How might we use this idea to evaluate a heuristic?

How Can Heuristics be Generated?

1. From Relaxed Problems that have fewer

constraints but give you ideas for the

heuristic function.

2. From Subproblems that are easier to

solve and whose exact cost solutions are

known.

45

The cost of solving a relaxed problem or subproblem is not

greater than the cost of solving the full problem.

Still may not succeed

• In spite of the use of heuristics and various

smart search algorithms, not all problems

can be solved.

• Some search spaces are just too big for a

classical search.

• So we have to look at other kinds of tools.

46

