
1

Learning
Chapter 18 and Parts of Chapter 20

• AI systems are complex and may have many
parameters.

• It is impractical and often impossible to encode
all the knowledge a system needs.

• Different types of data may require very different
parameters.

• Instead of trying to hard code all the knowledge,
it makes sense to learn it.

2

Learning from Observations

• Supervised Learning – learn a function
from a set of training examples which are
preclassified feature vectors.

feature vector class
(shape,color)
(square, red) I
(square, blue) I
(circle, red) II
(circle blue) II
(triangle, red) I
(triangle, green) I
(ellipse, blue) II
(ellipse, red) II

Given a previously unseen
feature vector, what is the
rule that tells us if it is in
class I or class II?

(circle, green) ?
(triangle, blue) ?

Real Observations

3

%Training set of Calenouria and Dorenouria
@DATA
0,1,1,0,0,0,0,0,0,1,1,2,3,0,1,2,0,0,0,0,0,0,0,0,1,0,0,1,
0,2,0,0,0,0,1,1,1,0,1,8,0,7,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
3,3,4,0,2,1,0,1,1,1,0,0,0,0,1,0,0,1,1,cal 0,1,0,0,0,1,0,0,0,4,1,2
,2,0,1,0,0,0,0,0,1,0,0,3,0,2,0,0,1,1,0,0,1,0,0,0,1,0,1,6,1,8,2,0,0,
0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,2,0,5,0,0,0,0,0,0,0,1,3,0,0,0,0,
0,cal
0,0,1,0,1,0,0,1,0,1,0,0,1,0,3,0,1,0,0,2,0,0,0,0,1,3,0,0,0,0,0,0,1,0,
2,0,2,0,1,8,0,5,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,2,2,0,0,3,0,0,2,1,1,
5,0,0,0,2,1,3,2,0,1,0,0,cal 0,0,0,0,0,0,0,0,2,0,0,1,2,0,1,1,0,0,0,1
,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,3,0,0,4,1,8,0,0,0,1,0,0,0,0,0,1,0,1
,0,1,0,0,0,0,0,0,4,2,0,2,1,1,2,1,1,0,0,0,0,2,0,0,2,2,cal
...

4

Learning from Observations
• Unsupervised Learning – No classes are

given. The idea is to find patterns in the
data. This generally involves clustering.

• Reinforcement Learning – learn from
feedback after a decision is made.

5

Topics to Cover
• Inductive Learning

– decision trees
– ensembles
– regresion
– neural nets
– kernel machines

• Unsupervised Learning
– K-Means Clustering
– Expectation Maximization (EM) algorithm

6

Decision Trees

• Theory is well-understood.

• Often used in pattern recognition
problems.

• Has the nice property that you can easily
understand the decision rule it has
learned.

7

Classic ML example: decision tree for
“Shall I play tennis today?”

from Tom Mitchell’s ML book

A Real Decision Tree (WEKA)

8

part23 < 0.5
| part29 < 3.5
| | part34 < 0.5
| | | part8 < 2.5
| | | | part2 < 0.5
| | | | | part63 < 3.5
| | | | | | part20 < 1.5 : dor (53/12) [25/8]
| | | | | | part20 >= 1.5
| | | | | | | part37 < 2.5 : cal (6/0) [5/2]
| | | | | | | part37 >= 2.5 : dor (3/1) [2/0]
| | | | | part63 >= 3.5 : dor (14/0) [3/0]
| | | | part2 >= 0.5 : cal (21/8) [10/4]
| | | part8 >= 2.5 : dor (14/0) [14/0]
| | part34 >= 0.5 : cal (38/12) [18/4]
| part29 >= 3.5 : dor (32/0) [10/2]
part23 >= 0.5
| part29 < 7.5 : cal (66/8) [35/12]
| part29 >= 7.5
| | part24 < 5.5 : dor (9/0) [4/0]
| | part24 >= 5.5 : cal (4/0) [4/0]

Calenouria

Dorenouria

9

Correctly Classified Instances 281 73.5602 %
Incorrectly Classified Instances 101 26.4398 %
Kappa statistic 0.4718
Mean absolute error 0.3493
Root mean squared error 0.4545
Relative absolute error 69.973 %
Root relative squared error 90.7886 %
Total Number of Instances 382

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.77 0.297 0.713 0.77 0.74 0.747 cal
0.703 0.23 0.761 0.703 0.731 0.747 dor

Wg Avg. 0.736 0.263 0.737 0.736 0.735 0.747

=== Confusion Matrix ===

a b <-- classified as
144 43 | a = cal
58 137 | b = dor

Precision = TP/(TP+FP)
Recall = TP/(TP+FN)
F-Measure = 2 x Precision x Recall

Precision + Recall

Evaluation

Properties of Decision Trees

• They divide the decision space into axis
parallel rectangles and label each
rectangle as one of the k classes.

• They can represent Boolean functions.
• They are variable size and deterministic.
• They can represent discrete or continuous

parameters.
• They can be learned from training data.

10

11

How do we choose the best attribute?

What should that attribute do for us?

Learning Algorithm for Decision Trees

Growtree(S) /* Binary version */
if (y==0 for all (x,y) in S) return newleaf(0)
else if (y==1 for all (x,y) in S) return newleaf(1)
else

choose best attribute xj
S0 = (x,y) with xj = 0
S1 = (x,y) with xj = 1
return new node(xj, Growtree(S0), Growtree(S1))

end

12

Criterion for attribute selection

• Which is the best attribute?
– The one that will result in the smallest tree
– Heuristic: choose the attribute that produces

the “purest” nodes
• Need a good measure of purity!

– Maximal when?
– Minimal when?

13

Information Gain

Which test is more informative?
Split over whether

Balance exceeds 50K

Over 50KLess or equal 50K EmployedUnemployed

Split over whether
applicant is employed

14

Information Gain
Impurity/Entropy (informal)

– Measures the level of impurity in a group
of examples

15

Impurity

Very impure group Less impure Minimum
impurity

16

Entropy: a common way to measure impurity

• Entropy =

pi is the probability of class i
Compute it as the proportion of class i in the set.

• Entropy comes from information theory. The
higher the entropy the more the information
content.

∑−
i

ii pp 2log

What does that mean for learning from examples?

16/30 are green circles; 14/30 are pink crosses
log2(16/30) = -.9; log2(14/30) = -1.1
Entropy = -(16/30)(-.9) –(14/30)(-1.1) = .99

17

2-Class Cases:
• What is the entropy of a group in which

all examples belong to the same
class?
– entropy = - 1 log21 = 0

• What is the entropy of a group with
50% in either class?
– entropy = -0.5 log20.5 – 0.5 log20.5 =1

Minimum
impurity

Maximum
impurity

not a good training set for learning

good training set for learning

18

Information Gain
• We want to determine which attribute in a given

set of training feature vectors is most useful for
discriminating between the classes to be
learned.

• Information gain tells us how important a given
attribute of the feature vectors is.

• We will use it to decide the ordering of attributes
in the nodes of a decision tree.

19

Calculating Information Gain

9 9 6.0
3 0
1 6lo g

3 0
1 6

3 0
1 4lo g

3 0
1 4

22 =





 ⋅−






 ⋅− 7 8 7.0

1 7
4lo g

1 7
4

1 7
1 3lo g

1 7
1 3

22 =





 ⋅−






 ⋅−

Entire population (30 instances)
17 instances

13 instances(Weighted) Average Entropy of Children =

615.0391.0
30
13787.0

30
17

=





 ⋅+






 ⋅

Information Gain= 0.996 - 0.615 = 0.38 for this split

3 9 1.0
1 3
1 2lo g

1 3
1 2

1 3
1lo g

1 3
1

22 =





 ⋅−






 ⋅−

Information Gain = entropy(parent) – [average entropy(children)]

parent
entropy

child
entropy

child
entropy

20

Entropy-Based Automatic
Decision Tree Construction

Node 1
What feature

should be used?

What values?

Training Set S
x1=(f11,f12,…f1m)
x2=(f21,f22, f2m)

.

.
xn=(fn1,f22, f2m)

Quinlan suggested information gain in his ID3 system
and later the gain ratio, both based on entropy.

21

Using Information Gain to Construct a
Decision Tree

Attribute A

v1 vkv2

Full Training Set S

Set S ′

repeat
recursively
till when?

S′={s∈S | value(A)=v1}

Choose the attribute A
with highest information
gain for the full training
set at the root of the tree.

Construct child nodes
for each value of A.
Each has an associated
subset of vectors in
which A has a particular
value.

1

2

3

22

Simple Example

X Y Z C
1 1 1 I
1 1 0 I
0 0 1 II
1 0 0 II

How would you distinguish class I from class II?

Training Set: 3 features and 2 classes

23

X Y Z C
1 1 1 I
1 1 0 I
0 0 1 II
1 0 0 II

Eparent= 1
Split on attribute X

I I
II II

I I
II

II

GAIN = 1 – (3/4)(.9184) – (1/4)(0) = .3112

X=1

X=0
Echild2= 0

Echild1= -(1/3)log2(1/3)-(2/3)log2(2/3)
= .5284 + .39
= .9184

If X is the best attribute,
this node would be further split.

24

X Y Z C
1 1 1 I
1 1 0 I
0 0 1 II
1 0 0 II

Eparent= 1
Split on attribute Y

I I
II II

I I

II
II

GAIN = 1 –(1/2) 0 – (1/2)0 = 1; BEST ONE

Y=1

Y=0
Echild2= 0

Echild1= 0

25

X Y Z C
1 1 1 I
1 1 0 I
0 0 1 II
1 0 0 II

Eparent= 1
Split on attribute Z

I I
II II

I
II

I
II

GAIN = 1 – (1/2)(1) – (1/2)(1) = 0 ie. NO GAIN; WORST

Z=1

Z=0
Echild2= 1

Echild1= 1

26

feature vector class
(square, red) I
(square, blue) I
(circle, red) II
(circle blue) II
(triangle, red) I
(triangle, green) I
(ellipse, blue) II
(ellipse, red) II

Try the shape feature

I I I I
II II II II

square ellipse
circle triangle

I I II II I I II II

Entropy?

Entropy? Entropy? Entropy? Entropy?
GAIN?

27

feature vector class
(square, red) I
(square, blue) I
(circle, red) II
(circle blue) II
(triangle, red) I
(triangle, green) I
(ellipse, blue) II
(ellipse, red) II

Try the shape feature

I I I I
II II II II

square ellipse
circle triangle

I I II II I I II II

Entropy?

Entropy? Entropy? Entropy? Entropy?
GAIN?

28

feature vector class
(square, red) I
(square, blue) I
(circle, red) II
(circle blue) II
(triangle, red) I
(triangle, green) I
(ellipse, blue) II
(ellipse, red) II

Try the color feature

I I I I
II II II II

red blue green

Entropy?

Entropy? Entropy? Entropy?
GAIN?

29

feature vector class
(square, red) I
(square, blue) I
(circle, red) II
(circle blue) II
(triangle, red) I
(triangle, green) I
(ellipse, blue) II
(ellipse, red) II

Try the color feature

I I I I
II II II II

red blue green

Entropy?

Entropy? Entropy? Entropy?
GAIN?

Many-Valued Features

• Your features might have a large number
of discrete values.

Example: pixels in an image have (R,G,B)
which are each integers between 0 and 255.
• Your features might have continuous

values.
Example: from pixel values, we compute

gradient magnitude, a continuous feature
30

One Solution to Both

• We often group the values into bins

31

R

[0,32) [32,64) [64,96) [96,128) [128,160] [160,192) [192,224) [224,255]

What if we want
it to be a binary
decision at each node?

Training and Testing

• Divide data into a training set and a
separate testing set.

• Construct the decision tree using the
training set only.

• Test the decision tree on the training set to
see how it’s doing.

• Test the decision tree on the testing set to
report its real performance.

32

Measuring Performance

• Given a test set of labeled feature vectors
e.g. (square,red) I
• Run each feature vector through the

decision tree
• Suppose the decision tree says it belongs

to class X and the real label is Y
• If (X=Y) that’s a correct classification
• If (X<>Y) that’s an error

33

Measuring Performance
• In a 2-class problem, where the classes are positive or

negative (ie. for cancer)
– # true positives TP
– # true negatives TN
– # false positives FP
– # false negatives FN

• Accuracy = #correct / #total = (TP +TN) / (TP + TN + FP + FN)
• Precision = TP / (TP + FP)

How many of the ones you said were cancer really were cancer?

• Recall = TP / (TP + FN)
How many of the ones who had cancer did you call cancer?

34

More Measures
• F-Measure = 2*(Precision * Recall) / (Precision + Recall)
Gives us a single number to represent both precision and

recall.
In medicine:
• Sensitivity = TP / (TP + FN) = Recall
The sensitivity of a test is the proportion of people who

have a disease who test positive for it.
• Specificity = TN / (TN + FP)
The specificity of a test is the number of people who DON’T

have a disease who test negative for it.

35

Measuring Performance
• For multi-class problems, we often look at

the confusion matrix.
assigned class

36

A B C D E F G
A
B
C
D
E
F
G

true
class

C(i,j) = number
of times (or
percentage)
class i is given
label j.

Overfitting

• Suppose the classifier h has error (1-
accuracy) of errortrain(h)

• And there is an alternate classifier
(hypothesis) h’ that has errortrain(h’)

• What if errortrain(h) < errortrain(h’)
• But errorD(h) > errorD(h’) for full set D
• Then we say h overfits the training data

37

38

What happens as the decision tree gets bigger and bigger?

Error on training data goes down, on testing data goes up

Reduced Error Pruning

39

• Split data into training and validation sets

• Do until further pruning is harmful

1. Evaluate impact on validation set of pruning
each possible node (and its subtree)

2. Greedily remove the one that most improves
validation set accuracy

• Then you need an additional independent testing set.

40
The tree is pruned back to the red line where
it gives more accurate results on the test data.

On training data it looks great.

But that’s not the case for the test data.

41

• The WEKA example with Calenouria and Dorenouria
I showed you used the REPTree classifier with 21 nodes.

• The classic decision tree for the same data had 65
nodes.

• Performance was similar for our test set.

• Performance increased using a random forest of 10
trees, each constructed with 7 random features.

42

Decision Trees: Summary
• Representation=decision trees

• Bias=preference for small decision trees

• Search algorithm=none

• Heuristic function=information gain or
information content or others

• Overfitting and pruning

• Advantage is simplicity and easy conversion to rules.

43

Ensembles

• An ensemble is a set of classifiers whose
combined results give the final decision.

test feature vector

classifier 1 classifier 2 classifier 3

super classifier

result

44

*A model is the learned decision rule. It can be as simple as a
hyperplane in n-space (ie. a line in 2D or plane in 3D) or in the
form of a decision tree or other modern classifier.

MODEL* ENSEMBLES
• Basic Idea

• Instead of learning one model
• Learn several and combine them

• Often this improves accuracy by a lot

• Many Methods
• Bagging
• Boosting
• Stacking

Bagging

• Generate bootstrap replicates of the
training set by sampling with replacement

• Learn one model on each replicate

• Combine by uniform voting

45

46

Boosting

• Maintain a vector of weights for samples
• Initialize with uniform weights
• Loop

– Apply learner to weighted samples
– Increase weights of misclassified ones

• Combine models by weighted voting

47

48

Idea of Boosting

49

ADABoost

• ADABoost boosts the accuracy of the
original learning algorithm.

• If the original learning algorithm does
slightly better than 50% accuracy,
ADABoost with a large enough number of
classifiers is guaranteed to classify the
training data perfectly.

50

ADABoost Weight Updating
(from Fig 18.34 text)

/* First find the sum of the weights of the misclassified samples
*/

for j = 1 to N do /* go through training samples */
if h[m](xj) <> yj then error <- error + wj

/* Now use the ratio of error to 1-error to change the
weights of the correctly classified samples */

for j = 1 to N do
if h[m](xj) = yj then w[j] <- w[j] * error/(1-error)

Example

51

• Start with 4 samples of equal weight .25.
• Suppose 1 is misclassified. So error = .25.
• The ratio comes out .25/.75 = .33
• The correctly classified samples get weight of .25*.33 = .0825

.2500

.0825

.0825

.0825

What’s wrong? What should we do?

We want them to add up to 1, not .4975.

Answer: To normalize, divide each
one by their sum (.4975).

52

Sample Application: Insect Recognition

Using circular regions of interest selected by an interest operator,
train a classifier to recognize the different classes of insects.

Doroneuria (Dor)

53

Boosting Comparison
• ADTree classifier only (alternating decision tree)

• Correctly Classified Instances 268 70.1571 %
• Incorrectly Classified Instances 114 29.8429 %
• Mean absolute error 0.3855
• Relative absolute error 77.2229 %

Classified as -> Hesperperla Doroneuria

Real
Hesperperlas

167 28

Real
Doroneuria

51 136

54

Boosting Comparison
AdaboostM1 with ADTree classifier

• Correctly Classified Instances 303 79.3194 %
• Incorrectly Classified Instances 79 20.6806 %
• Mean absolute error 0.2277
• Relative absolute error 45.6144 %

Classified as -> Hesperperla Doroneuria

Real
Hesperperlas

167 28

Real
Doroneuria

51 136

55

Boosting Comparison
• RepTree classifier only (reduced error pruning)

• Correctly Classified Instances 294 75.3846 %
• Incorrectly Classified Instances 96 24.6154 %
• Mean absolute error 0.3012
• Relative absolute error 60.606 %

Classified as -> Hesperperla Doroneuria

Real
Hesperperlas

169 41

Real
Doroneuria

55 125

56

Boosting Comparison
AdaboostM1 with RepTree classifier

• Correctly Classified Instances 324 83.0769 %
• Incorrectly Classified Instances 66 16.9231 %
• Mean absolute error 0.1978
• Relative absolute error 39.7848 %

Classified as -> Hesperperla Doroneuria

Real
Hesperperlas

180 30

Real
Doroneuria

36 144

57

References
• AdaboostM1: Yoav Freund and Robert E. Schapire (1996).

"Experiments with a new boosting algorithm". Proc
International Conference on Machine Learning, pages 148-
156, Morgan Kaufmann, San Francisco.

• ADTree: Freund, Y., Mason, L.: "The alternating decision tree
learning algorithm". Proceeding of the Sixteenth International
Conference on Machine Learning, Bled, Slovenia, (1999) 124-
133.

58

Random Forests
• Tree bagging creates decision trees using the

bagging technique. The whole set of such trees
(each trained on a random sample) is called a
decision forest. The final prediction takes the
average (or majority vote).

• Random forests differ in that they use a modified
tree learning algorithm to reduce variance.

59

Random Forest Algorithm
• At each split point in constructing the tree,

select a random sample of attributes.
• Then compute which of those gives the

highest information gain.
• If there are n attributes, the default choice

is to randomly pick sqrt(n) attributes for
classification problems.

• Furthermore, can use randomness to select
the split point values. This leads to
Extremely Randomized Trees. (ExtraTrees)60

Back to Stone Flies

61

Random forest of 10 trees, each constructed while considering 7 random features.
Out of bag error: 0.2487. Time taken to build model: 0.14 seconds

Correctly Classified Instances 292 76.4398 % (81.4 with AdaBoost)
Incorrectly Classified Instances 90 23.5602 %
Kappa statistic 0.5272
Mean absolute error 0.344
Root mean squared error 0.4069
Relative absolute error 68.9062 %
Root relative squared error 81.2679 %
Total Number of Instances 382

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.69 0.164 0.801 0.69 0.741 0.848 cal
0.836 0.31 0.738 0.836 0.784 0.848 dor

WAvg. 0.764 0.239 0.769 0.764 0.763 0.848

a b <-- classified as
129 58 | a = cal
32 163 | b = dor

More Terminology in Learning

• Loss: We’ve been talking about errors, but
modern machine learning theory talks
about loss.

• We minimize a loss function, rather than
maximizing a utility function.

• The loss function L(x,y,y’) is defined as the
amount of utility lost by predicting h(x) = y’
when the correct answer is f(x)=y.

62

Regression
• One common kind of learning is linear

regression.
• Simple case: univariate linear regression
• y = w1x + w0

• w is the vector (w1, w0)
• The linear function with those weights is

hw = w1x + w0

• Loss(hw) = Σ (yj – (w1xj + w0))2 for j=1 to n

• Summed over all training examples.
63

64

Solution

• We want to find w* = argminwLoss(hw)
• This is computed by taking partial

derivatives wrt to w0 and w1 and setting
them to zero.

• The more general solution for the more
general case, and for neural nets, is called
gradient descent.

• We will look at it wrt neural nets.

65

	Learning�Chapter 18 and Parts of Chapter 20
	Learning from Observations
	Real Observations
	Learning from Observations
	Topics to Cover
	Decision Trees
	Slide Number 7
	A Real Decision Tree (WEKA)
	Slide Number 9
	Properties of Decision Trees
	Slide Number 11
	Criterion for attribute selection
	Information Gain
		 			 Information Gain
	Impurity
	Slide Number 16
	Slide Number 17
	Information Gain
	Slide Number 19
	Entropy-Based Automatic Decision Tree Construction
	Using Information Gain to Construct a Decision Tree
	Simple Example
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Many-Valued Features
	One Solution to Both
	Training and Testing
	Measuring Performance
	Measuring Performance
	More Measures
	Measuring Performance
	Overfitting
	Slide Number 38
	Reduced Error Pruning
	Slide Number 40
	Slide Number 41
	Decision Trees: Summary
	Ensembles�
	Slide Number 44
	Bagging
	Slide Number 46
	Boosting
	Idea of Boosting
	ADABoost
	ADABoost Weight Updating�(from Fig 18.34 text)
	Example
	Slide Number 52
	Boosting Comparison
	Boosting Comparison
	Boosting Comparison
	Boosting Comparison
	References
	Slide Number 58
	Random Forests
	Random Forest Algorithm
	Back to Stone Flies
	More Terminology in Learning
	Regression
	Slide Number 64
	Solution

