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Learning
Chapter 18 and Parts of Chapter 20

• AI systems are complex and may have many 
parameters.

• It is impractical and often impossible to encode 
all the knowledge a system needs.

• Different types of data may require very different 
parameters.

• Instead of trying to hard code all the knowledge, 
it makes sense to learn it.
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Learning from Observations

• Supervised Learning – learn a function 
from a set of training examples which are 
preclassified feature vectors.

feature vector class
(shape,color)
(square, red) I
(square, blue) I
(circle, red) II
(circle blue) II
(triangle, red) I
(triangle, green) I
(ellipse, blue) II
(ellipse, red) II

Given a previously unseen
feature vector, what is the
rule that tells us if it is in
class I or class II?

(circle, green) ?
(triangle, blue) ?



Real Observations
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%Training set of Calenouria and Dorenouria
@DATA 
0,1,1,0,0,0,0,0,0,1,1,2,3,0,1,2,0,0,0,0,0,0,0,0,1,0,0,1,
0,2,0,0,0,0,1,1,1,0,1,8,0,7,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
3,3,4,0,2,1,0,1,1,1,0,0,0,0,1,0,0,1,1,cal 0,1,0,0,0,1,0,0,0,4,1,2
,2,0,1,0,0,0,0,0,1,0,0,3,0,2,0,0,1,1,0,0,1,0,0,0,1,0,1,6,1,8,2,0,0,
0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,2,0,5,0,0,0,0,0,0,0,1,3,0,0,0,0,
0,cal 
0,0,1,0,1,0,0,1,0,1,0,0,1,0,3,0,1,0,0,2,0,0,0,0,1,3,0,0,0,0,0,0,1,0,
2,0,2,0,1,8,0,5,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,2,2,0,0,3,0,0,2,1,1,
5,0,0,0,2,1,3,2,0,1,0,0,cal 0,0,0,0,0,0,0,0,2,0,0,1,2,0,1,1,0,0,0,1
,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,3,0,0,4,1,8,0,0,0,1,0,0,0,0,0,1,0,1
,0,1,0,0,0,0,0,0,4,2,0,2,1,1,2,1,1,0,0,0,0,2,0,0,2,2,cal 
...
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Learning from Observations
• Unsupervised Learning – No classes are 

given. The idea is to find patterns in the 
data. This generally involves clustering.

• Reinforcement Learning – learn from 
feedback after a decision is made.
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Topics to Cover
• Inductive Learning

– decision trees
– ensembles
– regresion
– neural nets
– kernel machines

• Unsupervised Learning
– K-Means Clustering
– Expectation Maximization (EM) algorithm
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Decision Trees

• Theory is well-understood.

• Often used in pattern recognition 
problems.

• Has the nice property that you can easily 
understand the decision rule it has 
learned.
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Classic ML example: decision tree for
“Shall I play tennis today?”

from Tom Mitchell’s ML book



A Real Decision Tree (WEKA)
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part23 < 0.5
|   part29 < 3.5
|   |   part34 < 0.5
|   |   |   part8 < 2.5
|   |   |   |   part2 < 0.5
|   |   |   |   |   part63 < 3.5
|   |   |   |   |   |   part20 < 1.5 : dor (53/12) [25/8]
|   |   |   |   |   |   part20 >= 1.5
|   |   |   |   |   |   |   part37 < 2.5 : cal (6/0) [5/2]
|   |   |   |   |   |   |   part37 >= 2.5 : dor (3/1) [2/0]
|   |   |   |   |   part63 >= 3.5 : dor (14/0) [3/0]
|   |   |   |   part2 >= 0.5 : cal (21/8) [10/4]
|   |   |   part8 >= 2.5 : dor (14/0) [14/0]
|   |   part34 >= 0.5 : cal (38/12) [18/4]
|   part29 >= 3.5 : dor (32/0) [10/2]
part23 >= 0.5
|   part29 < 7.5 : cal (66/8) [35/12]
|   part29 >= 7.5
|   |   part24 < 5.5 : dor (9/0) [4/0]
|   |   part24 >= 5.5 : cal (4/0) [4/0]

Calenouria

Dorenouria
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Correctly Classified Instances         281               73.5602 %
Incorrectly Classified Instances       101               26.4398 %
Kappa statistic                                     0.4718
Mean absolute error                            0.3493
Root mean squared error                    0.4545
Relative absolute error                      69.973  %
Root relative squared error               90.7886 %
Total Number of Instances                382     

=== Detailed Accuracy By Class ===

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
0.77         0.297       0.713        0.77       0.74            0.747         cal
0.703       0.23         0.761        0.703     0.731          0.747         dor

Wg Avg.   0.736       0.263       0.737        0.736     0.735          0.747

=== Confusion Matrix ===

a   b   <-- classified as
144  43 |   a = cal
58 137 |   b = dor

Precision = TP/(TP+FP)
Recall = TP/(TP+FN)
F-Measure = 2 x Precision x Recall

Precision + Recall

Evaluation



Properties of Decision Trees

• They divide the decision space into axis 
parallel rectangles and label each 
rectangle as one of the k classes.

• They can represent Boolean functions.
• They are variable size and deterministic.
• They can represent discrete or continuous 

parameters.
• They can be learned from training data.

10
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How do we choose the best attribute?

What should that attribute do for us?

Learning Algorithm for Decision Trees

Growtree(S)    /* Binary version */
if (y==0 for all (x,y) in S) return newleaf(0)
else if (y==1 for all (x,y) in S) return newleaf(1)
else

choose best attribute xj
S0 = (x,y) with xj = 0
S1 = (x,y) with xj = 1
return new node(xj, Growtree(S0), Growtree(S1))

end 
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Criterion for attribute selection

• Which is the best attribute?
– The one that will result in the smallest tree
– Heuristic: choose the attribute that produces 

the “purest” nodes
• Need a good measure of purity!

– Maximal when?
– Minimal when?
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Information Gain

Which test is more informative?
Split over whether 

Balance exceeds 50K

Over 50KLess or equal 50K EmployedUnemployed

Split over whether 
applicant is employed
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Information Gain
Impurity/Entropy (informal)

– Measures the level of impurity in a group 
of examples
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Impurity

Very impure group Less impure Minimum 
impurity



16

Entropy: a common way to measure impurity

• Entropy = 

pi is the probability of class i
Compute it as the proportion of class i in the set.

• Entropy comes from information theory.  The 
higher the entropy the more the information 
content.

∑−
i

ii pp 2log

What does that mean for learning from examples?

16/30 are green circles; 14/30 are pink crosses
log2(16/30) =  -.9;       log2(14/30) =  -1.1 
Entropy = -(16/30)(-.9) –(14/30)(-1.1) = .99 
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2-Class Cases:
• What is the entropy of a group in which 

all examples belong to the same 
class?
– entropy = - 1 log21 = 0

• What is the entropy of a group with 
50% in either class?
– entropy = -0.5  log20.5 – 0.5  log20.5 =1

Minimum 
impurity

Maximum
impurity

not a good training set for learning

good training set for learning
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Information Gain
• We want to determine which attribute in a given 

set of training feature vectors is most useful for 
discriminating between the classes to be 
learned.

• Information gain tells us how important a given 
attribute of the feature vectors is.

• We will use it to decide the ordering of attributes 
in the nodes of a decision tree.



19

Calculating Information Gain
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Entropy-Based Automatic 
Decision Tree Construction

Node 1
What feature 

should be used?

What values?

Training Set S
x1=(f11,f12,…f1m)
x2=(f21,f22,    f2m)

.

.
xn=(fn1,f22,    f2m)

Quinlan suggested information gain in his ID3 system
and later the gain ratio, both based on entropy.
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Using Information Gain to Construct a 
Decision Tree

Attribute A

v1 vkv2

Full Training Set S

Set S ′

repeat
recursively
till when?

S′={s∈S | value(A)=v1}

Choose the attribute A
with highest information
gain for the full training
set at the root of the tree.

Construct child nodes
for each value of A.
Each has an associated
subset of vectors in
which A has a particular
value.

1

2

3
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Simple Example

X      Y      Z           C
1 1       1           I
1 1       0           I
0        0       1          II
1        0       0          II

How would you distinguish class I from class II?

Training Set: 3 features and 2 classes
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X      Y      Z           C
1 1       1           I
1 1       0           I
0        0       1          II
1        0       0          II

Eparent= 1 
Split on attribute X

I  I
II II

I I
II

II

GAIN = 1 – ( 3/4)(.9184) – (1/4)(0) = .3112

X=1

X=0
Echild2= 0

Echild1= -(1/3)log2(1/3)-(2/3)log2(2/3)
= .5284 + .39
=  .9184

If X is the best attribute,
this node would be further split.
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X      Y      Z           C
1 1       1           I
1 1       0           I
0        0       1          II
1        0       0          II

Eparent= 1 
Split on attribute Y

I  I
II II

I  I

II
II

GAIN = 1 –(1/2) 0 – (1/2)0 = 1; BEST ONE

Y=1

Y=0
Echild2= 0

Echild1= 0
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X      Y      Z           C
1 1       1           I
1 1       0           I
0        0       1          II
1        0       0          II

Eparent= 1 
Split on attribute Z

I  I
II II

I 
II

I
II

GAIN = 1 – ( 1/2)(1) – (1/2)(1) = 0    ie. NO GAIN; WORST

Z=1

Z=0
Echild2= 1

Echild1= 1
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feature vector class
(square, red) I
(square, blue) I
(circle, red) II
(circle blue) II
(triangle, red) I
(triangle, green) I
(ellipse, blue) II
(ellipse, red) II

Try the shape feature

I  I  I  I
II II II II

square                                  ellipse
circle                triangle 

I   I           II   II          I   I          II   II

Entropy?

Entropy?  Entropy?  Entropy?  Entropy?
GAIN?
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feature vector class
(square, red) I
(square, blue) I
(circle, red) II
(circle blue) II
(triangle, red) I
(triangle, green) I
(ellipse, blue) II
(ellipse, red) II

Try the shape feature

I  I  I  I
II II II II

square                                  ellipse
circle                triangle 

I   I           II   II          I   I          II   II

Entropy?

Entropy?  Entropy?  Entropy?  Entropy?
GAIN?



28

feature vector class
(square, red) I
(square, blue) I
(circle, red) II
(circle blue) II
(triangle, red) I
(triangle, green) I
(ellipse, blue) II
(ellipse, red) II

Try the color feature

I  I  I  I
II II II II

red      blue   green 

Entropy?

Entropy?  Entropy?  Entropy?  
GAIN?
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feature vector class
(square, red) I
(square, blue) I
(circle, red) II
(circle blue) II
(triangle, red) I
(triangle, green) I
(ellipse, blue) II
(ellipse, red) II

Try the color feature

I  I  I  I
II II II II

red      blue   green 

Entropy?

Entropy?  Entropy?  Entropy?  
GAIN?



Many-Valued Features

• Your features might have a large number 
of discrete values.

Example: pixels in an image have (R,G,B)
which are each integers between 0 and 255.
• Your features might have continuous 

values.
Example: from pixel values, we compute 

gradient magnitude, a continuous feature
30



One Solution to Both

• We often group the values into bins

31

R

[0,32)   [32,64)     [64,96)     [96,128)  [128,160] [160,192) [192,224)  [224,255]

What if we want
it to be a binary
decision at each node?



Training and Testing

• Divide data into a training set and a 
separate testing set.

• Construct the decision tree using the 
training set only.

• Test the decision tree on the training set to 
see how it’s doing.

• Test the decision tree on the testing set to 
report its real performance.

32



Measuring Performance

• Given a test set of labeled feature vectors
e.g. (square,red) I
• Run each feature vector through the 

decision tree
• Suppose the decision tree says it belongs 

to class X and the real label is Y
• If (X=Y) that’s a correct classification
• If (X<>Y) that’s an error

33



Measuring Performance
• In a 2-class problem, where the classes are positive or 

negative (ie. for cancer)
– # true positives TP
– # true negatives TN
– # false positives FP
– # false negatives FN

• Accuracy = #correct / #total = (TP +TN) / (TP + TN + FP + FN)
• Precision = TP / (TP + FP)

How many of the ones you said were cancer really were cancer?

• Recall = TP / (TP + FN)
How many of the ones who had cancer did you call cancer?

34



More Measures
• F-Measure = 2*(Precision * Recall) / (Precision + Recall)
Gives us a single number to represent both precision and 

recall.
In medicine:
• Sensitivity = TP / (TP + FN) = Recall
The sensitivity of a test is the proportion of people who 

have a disease who test positive for it.
• Specificity = TN / (TN + FP) 
The specificity of a test is the number of people who DON’T 

have a disease who test negative for it. 

35



Measuring Performance
• For multi-class problems, we often look at 

the confusion matrix.
assigned class

36

A    B   C   D   E   F   G
A
B
C
D
E
F
G

true
class

C(i,j) = number
of times (or
percentage)
class i is given
label j.



Overfitting

• Suppose the classifier h has error (1-
accuracy) of errortrain(h)

• And there is an alternate classifier 
(hypothesis) h’ that has errortrain(h’)

• What if errortrain(h) < errortrain(h’)
• But errorD(h) > errorD(h’) for full set D
• Then we say h overfits the training data

37
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What happens as the decision tree gets bigger and bigger?

Error on training data goes down, on testing data goes up



Reduced Error Pruning
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• Split data into training and validation sets

• Do until further pruning is harmful

1. Evaluate impact on validation set of pruning
each possible node (and its subtree)

2.  Greedily remove the one that most improves
validation set accuracy

• Then you need an additional independent testing set.
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The tree is pruned back to the red line where
it gives more accurate results on the test data.

On training data it looks great.

But that’s not the case for the test data.



41

• The WEKA example with Calenouria and Dorenouria
I showed you used the REPTree classifier with 21 nodes.

• The classic decision tree for the same data had 65
nodes. 

• Performance was similar for our test set.

• Performance increased using a random forest of 10 
trees, each constructed with 7 random features.
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Decision Trees: Summary
• Representation=decision trees

• Bias=preference for small decision trees

• Search algorithm=none

• Heuristic function=information gain or
information content or others

• Overfitting and pruning

• Advantage is simplicity and easy conversion to rules.
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Ensembles

• An ensemble is a set of classifiers whose 
combined results give the final decision.

test feature vector

classifier 1 classifier 2 classifier 3

super classifier

result
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*A model is the learned decision rule. It can be as simple as a 
hyperplane in n-space (ie. a line in 2D or plane in 3D) or in the
form of a decision tree or other modern classifier.

MODEL* ENSEMBLES
• Basic Idea

• Instead of learning one model
• Learn several and combine them

• Often this improves accuracy by a lot

• Many Methods
• Bagging
• Boosting
• Stacking



Bagging

• Generate bootstrap replicates of the 
training set by sampling with replacement

• Learn one model on each replicate

• Combine by uniform voting

45
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Boosting

• Maintain a vector of weights for samples
• Initialize with uniform weights
• Loop

– Apply learner to weighted samples
– Increase weights of misclassified ones

• Combine models by weighted voting

47
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Idea of Boosting
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ADABoost

• ADABoost boosts the accuracy of the 
original learning algorithm.

• If the original learning algorithm does 
slightly better than 50% accuracy, 
ADABoost with a large enough number of 
classifiers is guaranteed to classify the 
training data perfectly.
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ADABoost Weight Updating
(from Fig 18.34 text)

/* First find the sum of the weights of the misclassified samples 
*/

for j = 1 to N do /* go through training samples */
if h[m](xj) <> yj then error <- error + wj

/* Now use the ratio of error to 1-error to change the
weights of the correctly classified samples */

for j = 1 to N do
if h[m](xj) = yj then w[j] <- w[j] * error/(1-error)



Example
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• Start with 4 samples of equal weight .25.
• Suppose 1 is misclassified. So error = .25.
• The ratio comes out .25/.75 = .33
• The correctly classified samples get weight of .25*.33 = .0825

.2500

.0825

.0825

.0825

What’s wrong? What should we do?

We want them to add up to 1, not .4975.

Answer: To normalize, divide each
one by their sum (.4975).
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Sample Application:  Insect Recognition

Using circular regions of interest selected by an interest operator,
train a classifier to recognize the different classes of insects.

Doroneuria (Dor)
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Boosting Comparison
• ADTree classifier only (alternating decision tree)

• Correctly Classified Instances         268                70.1571 %
• Incorrectly Classified Instances        114               29.8429 %
• Mean absolute error                       0.3855
• Relative absolute error                 77.2229 %

Classified as -> Hesperperla Doroneuria

Real
Hesperperlas

167 28

Real
Doroneuria

51 136
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Boosting Comparison
AdaboostM1 with ADTree classifier

• Correctly Classified Instances         303              79.3194 %
• Incorrectly Classified Instances        79               20.6806 %
• Mean absolute error                      0.2277
• Relative absolute error                 45.6144 %

Classified as -> Hesperperla Doroneuria

Real
Hesperperlas

167 28

Real
Doroneuria

51 136
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Boosting Comparison
• RepTree classifier only (reduced error pruning)

• Correctly Classified Instances         294              75.3846 %
• Incorrectly Classified Instances        96               24.6154 %
• Mean absolute error                       0.3012
• Relative absolute error                 60.606  %

Classified as -> Hesperperla Doroneuria

Real
Hesperperlas

169 41

Real
Doroneuria

55 125
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Boosting Comparison
AdaboostM1 with RepTree classifier

• Correctly Classified Instances         324               83.0769 %
• Incorrectly Classified Instances        66               16.9231 %
• Mean absolute error                      0.1978
• Relative absolute error                 39.7848 %

Classified as -> Hesperperla Doroneuria

Real
Hesperperlas

180 30

Real
Doroneuria

36 144
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Random Forests
• Tree bagging creates decision trees using the 

bagging technique. The whole set of such trees 
(each trained on a random sample) is called a 
decision forest. The final prediction takes the 
average (or majority vote).

• Random forests differ in that they use a modified 
tree learning algorithm to reduce variance.

59



Random Forest Algorithm
• At each split point in constructing the tree, 

select a random sample of attributes.
• Then compute which of those gives the 

highest information gain.
• If there are n attributes, the default choice 

is to randomly pick sqrt(n) attributes for 
classification problems. 

• Furthermore, can use randomness to select 
the split point values. This leads to 
Extremely Randomized Trees. (ExtraTrees)60



Back to Stone Flies
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Random forest of 10 trees, each constructed while considering 7 random features.
Out of bag error: 0.2487.  Time taken to build model: 0.14 seconds

Correctly Classified Instances         292               76.4398 % (81.4 with AdaBoost)
Incorrectly Classified Instances        90                23.5602 %
Kappa statistic                          0.5272
Mean absolute error                      0.344 
Root mean squared error                  0.4069
Relative absolute error                 68.9062 %
Root relative squared error             81.2679 %
Total Number of Instances              382     

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
0.69      0.164      0.801     0.69      0.741      0.848    cal
0.836     0.31       0.738     0.836    0.784      0.848    dor

WAvg.       0.764     0.239     0.769     0.764    0.763      0.848

a   b   <-- classified as
129  58 |   a = cal
32 163 |   b = dor



More Terminology in Learning

• Loss: We’ve been talking about errors, but 
modern machine learning theory talks 
about loss. 

• We minimize a loss function, rather than 
maximizing a utility function.

• The loss function L(x,y,y’) is defined as the 
amount of utility lost by predicting h(x) = y’ 
when the correct answer is f(x)=y.

62



Regression
• One common kind of learning is linear 

regression. 
• Simple case: univariate linear regression
• y = w1x + w0  

• w is the vector (w1, w0)
• The linear function with those weights is 

hw = w1x + w0 

• Loss( hw) = Σ (yj – (w1xj + w0))2 for j=1 to n

• Summed over all training examples.
63
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Solution

• We want to find w* = argminwLoss(hw)
• This is computed by taking partial 

derivatives wrt to w0 and w1 and setting 
them to zero. 

• The more general solution for the more 
general case, and for neural nets, is called 
gradient descent. 

• We will look at it wrt neural nets.

65
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