More on Learning

* Neural Nets
e Support Vectors Machines
* Unsupervised Learning (Clustering)

— K-Means
— Expectation-Maximization



Neural Net Learning

* Motivated by studies of the brain.
A network of “artificial neurons” that learns a function.

. Doesn t have clear decision rules like decision trees, but
gth ytsuccessful in many different applications. (e.g. face
etection)

 We use them frequently in our research.

* I’ll be using algorithms from

http://www.cs.mtu.edu/~nilufer/classes/cs4811/2016-
spring/lecture-slides/cs4811-neural-net-algorithms.pdf



http://www.cs.mtu.edu/~nilufer/classes/cs4811/2016-spring/lecture-slides/cs4811-neural-net-algorithms.pdf

Brains

neurons of = 20 types, synapses, 1ms—10ms cycle time

Signals are noisy “spike trains” of electrical potential
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McCulloch—Pitts “unit”

Output 1s a “squashed” linear function of the inputs:
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A gross oversimplification of real neurons, but its purpose Is
to develop understanding of what networks of simple units can do
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Simple Feed-Forward Perceptrons

” W1 in=(>W,;x)+06

out = g[in]
out

/ g is the activation function
X2 W2 /

It can be a step function:
g(x)=1ifx>=0and 0O (or -1) else.

0

It can be a sigmoid function:
g(x) = 1/(1+exp(-x)).

The sigmoid function is differentiable
and can be used in a gradient descent
algorithm to update the weights.




Activation functions
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(a) is a step function or threshold function
(b) is a sigmoid function 1/{1 +¢e ")

Changing the bias weight 17 ; moves the threshold location
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More Complete Functions (for Deep
Learning)

Sigmoid: o(x) = 1/(1 + e)

RelLU function (rectifiead linear unit)

ReLU(x) = max(0,x)

Softplus function is a smooth version of the RelLU
function:

softplus(x) = log(1+¢€X)

The derivative of softplus is sigmoid.
Tanh function:

tanh(x) = (e?*-1)/(e?*+1)
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Gradient Descent

takes steps proportional to the negative of the gradient of a function

to find its local minimum

Let X be the inputs, y the class, W the weights
in=2 W,x

Let’s minimize the loss. We’ll call it Err for short.
Err=y—g(in)

E =% Err?is the squared loss to minimize
OE/OW, = Err * OErr/OW, = Err * 0/0W(g(in))(-1)
=-Err * g’(in) * x;

The update is W, <- W, + a * Err * g'(in) ™ X
a is called the learning rate.



Simple Feed-Forward Perceptrons

x1 W1 repeat

for each e in examples do
@ out in=(3W;x)+6

> M/ Err = yle] - glin]

W; =W, + a Err g’(in) x;[e]
until done

0

Examples: A=[(.5,1.5),+1], B=[(-.5,.5),-1], C=[(.5,.5),+1]
Initialization: W, =1, W, =2,0=-2

Notel: when g is a step function, the g’(in) is removed.
Note2: later in back propagation, Err * g’(in) will be called A
We'll let g(x) =1 if x >=0 else -1



Graphically

Examples: A=[(.5,1.5),+1], B=[(-.5,.5),-1], C=[(.5,.5),+1]
Initialization: W, =1, W, =2,0=-2

wrong

boundary -

W,

o A

BA

o CT

Boundary is W x, + W,x, +0 =0




Examples: repeat

A=[(.5,1.5),+1], Learnlng fo.r e_achein exagnples do
B=[(-.5,.5) -1], in = (2 Wyx) +

: Err =y[e] — g[in]
C=[(.5,.5),+1] W, =W, +a Errg’(in) x;[e]
Initialization: W, =1, W, =2,0=-2 until done

A=[(.5,1.5),+1]
in=.5(1) + (1.5)(2) -2 = 1.5
g(in) = 1; Err = 0; NO CHANGE

Let a=.5

B=[(-.5,.5),-1]
In=(-.5)(1) + (.5)(2) -2 =-1.5
g(in) =-1; Err = 0; NO CHANGE

W1<-W1+.5(2)(.5) leaving out g’
<-1+1(.5)=1.5

W2 <- W2 +.5(2) (.5)

<- 2+1(.5)=2.5
.C=[(.5,.5),+1] e <- e + _5(+1_ (_1))
in=(5)(1) +(5)(2)-=2=-5 0 < -2+.5(2)=-1
g(in) =-1; Err=1-(-1)=2




wrong

boundary -

W,

a

Graphically

Examples: A=[(.5,1.5),+1], B=[(-.5,.5),-1], C=[(.5,.5),+1]
Initialization: W, =1, W, =2,0=-2

New: : W, =1.5, W, =2.5,0 =-1

Boundary is W x, + W,x, +0 =0

o A

BA

Wl
approximately correct boundary



Apple/banana example
Training set:

(3o} (ot

Initial weights:
W=(05-1-05) b=0.5

—

First iteration:
vector W _pll b
a = hardlim(Wp1+b) = hardlim | (0.5 -1 —0.5) x 1 |+ 0.5)
—1

a = hardlim(—0.5)=0 e=t;—a=1-0=1 error
new W

wnew — woldy onT — (0.5-1-0.5)+(1)(~14+1-1) = (-0.54+0-1.5)

n = 1in this example

WBS WS06-07 13




Second iteration

new W p21
a = hardlim(Wps+b) = hardlim ((0.5 0 —1.5) x ( 1 ) + 1.5)
i

a = hardlim(2.5) =1 e=t; —a=0-1= -1
lV new — ‘v,,v'()l d + e pT

W = (0.5 0 —1.5) 4+ (-1)(1 1 —1)

W = (1.5 —1 —0.5)

oY = pold | ¢ = 1.5 4 (-1) =0.5

WBS WS06-07 14




Checking the solution (test vectors)

-1
a = hardlim(Wp1+b) = hardlim ((—1.5 —1-0.5) x ( | ) - 0.5)
-1

a = hardlim(1.5) =1 =1,

1
a = hardlim(Wp>+4b) = hardlim ((—1.5 —1-0.5) x ( 1 ) 4 0.5)
-1

a = hardlim(—1.5) =0 =15

WBS WS06-07 15




Checking the solution (testing the network)

-1
a = hardlim | (=1.5 -1 —0.5) x 1 |+0.5
-1

a = hardlim(1) = 1(banana)

1
a = hardlim | (1.5 -1 —0.5) X 1 |+05
-1

a = hardlim(—2) = —1(apple)
The net recovers the correct answer from noisy information:

-1
a = hardlim | (-1.5-1-05)x | -1 | +0.5
-1

a = hardlim(3) = 1(banana)
WBS WS06-07 16




Back Propagation

Simple single layer networks with feed
forward learning were not powerful enough.

Could only produce simple linear classifiers.

More powerful networks have multiple hidden
layers.

The learning algorithm is called back
propagation, because it computes the error at
the end and propagates it back through the
weights of the network to the beginning.



The backpropagation algorithm  (slightly different from text)

The following is the backpropagation algorithm for learning in multilayer networks.

function BACK-PROP-LEARNING(examples, network)
returns a neural network

inputs:
examples, a set of examples, each with input vector X and output vector y.
network, a multilayer network with L layers, weights W} ;. activation function g
local variables: A, a vector of errors, indexed by network node

for each weight w; ; in network do , .
w; ; < a small random number Let’s break it

repeat , into steps.
for each example (X,y) in examples do

/* Propagate the inputs forward to compute the outputs. */

for each node i in the input layer do /I Simply copy the input values.
a; «— Iy
forl =2to Ldo /1l Feed the values forward.

for each node j in layer [ do
'inj — Z‘i Wi 5 Aj
a; — g(in;)
for each node j in the output layer do /I Compute the error at the output.
Alj] « g'(ing) < (y; — a;)
/* Propagate the deltas backward from output layer to input layer */
forl=L —1to1do
for each node i in layer [ do
Ali] « g'(in;) 325 wij Alj] // “Blame™ a node as much as its weig
/* Update every weight in network using deltas. */
for each weight w; ; in network do
Wi — Wy +a x a; X Alj] /l Adjust the weights.
until some stopping criterion is satisfied

return nerwork



The backpropagation algorithm

The following is the backpropagation algorithm for learning in multilayer networks.

function BACK-PROP-LEARNING(examples, network)
returns a neural network

inputs:
examples, a set of examples, each with input vector X and output vector ¥.
network, a multilayer network with L layers, weights W ;, activation function g
local variables: A, a vector of errors, indexed by network node

for each weight w; ; in network do

w; ; < a small random number

layer 1 2 3=L

1 wll
o7l o wif
/ nf

X2
W

2f

n2

x3




repeat

for each example (X.,y) in examples do

Forward Computation

/* Propagate the inputs forward to compute the outputs. */

for each node 7 in the input layer do

ﬁ'i —

xT;

for{ =2to L do
for each node j in layer [ do

layer 1

x1

2 d;  3=L
wll /

IHJ — Z:’ Wi j y

a; «— g(in;)

\

nl

X2

w2l
/
"

X3

n2

wlf

2f

\az

nf

// Stmply copy the input values.

/[l Feed the values forward.



Backward Propagation 1

for each node j in the output layer do // Compute the error at the output.
Alj] < g'(in;) x (y; — a;)

* Node nf is the only node in our output layer.

* Compute the error at that node and multiply by the derivative of the weighted
input sum to get the change delta.

layer 1 2 3=L
x1 wll
1 wif h__)

&
w2l f -C . _
W - 2f A’(‘.\ é-?, (’ﬂ}\( ((j% F

x3




Backward Propagation 2

/* Propagate the deltas backward from output layer to input layer */

foril=L—1to1do

layer 1

x1

X2

X3

for each node i in layer [ do
Ali] + g'(in;) >-; wij Alj] // “Blame™ a node as much as its weig

At each of the other layers, the deltas use
e the derivative of its input sum
e the sum of its output weights
* the delta computed for the output error

wll

2

nl

n2

wlf

2f

3=

nf

L

Ais at output layer

A, € g’'(in,) wy A



Backward Propagation 3

/* Update every weight in network using deltas. */
for each weight w; ; in network do
Wi — Wij +a X a; X Alj] /I Adjust the weights.

Now that all the deltas are defined, the weight updates just use them.

layer 1 2 3

x1 wll
o7t bwir
/ nf
X2
w

2f

L

n2

x3




Back Propagation Summary

 Compute delta values for the output units
using observed errors.

e Starting at the output-1 layer

— repeat
e propagate delta values back to previous layer
* update weights between the two layers

— till done with all layers

* This is done for all examples and multiple
epochs, till convergence or enough iterations.



Time taken to build model: 16.2 seconds

Correctly Classified Instances 307 80.3665 % (did not boost)
Incorrectly Classified Instances 75 19.6335 %

Kappa statistic 0.6056

Mean absolute error 0.1982

Root mean squared error 0.41

Relative absolute error 39.7113 %

Root relative squared error 81.9006 %

Total Number of Instances 382

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.706 0.103 0.868 0.706 0.779 0.872 cal
0.897 0.294 0.761 0.897 0.824 0.872 dor

W Avg. 0.804 0.2 0.814 0.804 0.802 0.872

=== Confusion Matrix ===
a b <--classified as

132 55| a=cal
20175 | b=dor



Handwritten digit recognition

3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) =~ 0.6% error



Kernel Machines

A relatively new learning methodology (1992) derived from
statistical learning theory.

Became famous when it gave accuracy comparable to neural
nets in a handwriting recognition class.

Was introduced to computer vision researchers by Tomaso
Poggio at MIT who started using it for face detection and got
better results than neural nets.

Has become very popular and widely used with packages
available.

28




Support Vector Machines (SVM)

Support vector machines are learning algorithms
that try to find a hyperplane that separates
the different classes of data the most.

They are a specific kind of kernel machines based on
two key ideas:

* maximum margin hyperplanes

e akernel ‘trick’

29



The SVM Equation

Ysum(Xg) = argmax 2 q; K(Xi,xq)

C i=1,m
X4 IS @ query or unknown object
c Indexes the classes

there are m support vectors x; with weights
a;., I=1 to mfor class c

K Is the kernel function that compares x; to

%



Maximal Margin (2 class problem)

In 2D space,
a hyperplane is
a line.

In 3D space,
it Is a plane.

Find the hyperplane with maximal margin for all
the points. This originates an optimization problem

which has a unique solution. "



Support Vectors

* The weights «, associated with data points are zero,
except for those points closest to the separator.

* The points with nonzero weights are called the

support vectors (because they hold up the separating
plane).

* Because there are many fewer support vectors than
total data points, the number of parameters defining
the optimal separator is small.

32



A Geometric Interpretation

" Class 2
=0
0,=0.6 (10
8 & o
w [:[?z[] _
p==0 W Q C?[l_
Qa. =08
Ei4!ﬂ' 0 i
a.=1.4 T
ngﬂ 0 wx4+hb=1
Class 1 ;=0 wix+b=0
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Kernels

* A kernelis just a similarity function. It takes 2
inputs and decides how similar they are.

* Kernels offer an alternative to standard
feature vectors. Instead of using a bunch of
features, you define a single kernel to decide
the similarity between two objects.

34



Kernels and SVMs

 Under some conditions, every kernel function
can be expressed as a dot product in a
(possibly infinite dimensional) feature space
(Mercer’s theorem)

* SVM machine learning can be expressed in
terms of dot products.

e So SVM machines can use kernels instead of
feature vectors.

35



The Kernel Trick

The SVM algorithm implicitly maps the original
data to a feature space of possibly infinite dimension
In which data (which is not separable in the

original space) becomes separable in the feature space.

Original space R Feature space R;“
o 0 1 0 1
1 0 ) 0 .
0 0 Kernel 0 ) 0 1
1 1 trick

36



Kernel Functions

* The kernel function is designed by the
developer of the SVM.

* |tis applied to pairs of input data to evaluate

dot products in some corresponding feature
space.

e Kernels can be all sorts of functions including
polynomials and exponentials.

37




Kernel Function used in our 3D Computer
Vision Work

* k(A,B) = exp(-62,5/5?)

 Aand B are shape descriptors (big
vectors).

* 0Oisthe angle between these
vectors.

e o?isthe “width” of the kernel.

38



What does SVM learning solve?

* The SVM is looking for the best separating plane in its
alternate space.

* It solves a quadratic programming optimization problem

argmax jZOLj-l/ 2 J_Z,% o Y Yy (X 0X,)

subject to o; > 0 and 2ayy; = 0.

* The equation for the separator for these optimal a;is

h(x) = sign(Z_OLj y; (xex;) — b)
J

39



Time taken to build model: 0.15 seconds

Correctly Classified Instances 319 83.5079 %
Incorrectly Classified Instances 63 16.4921 %
Kappa statistic 0.6685

Mean absolute error 0.1649

Root mean squared error 0.4061

Relative absolute error 33.0372 %

Root relative squared error 81.1136 %

Total Number of Instances 382

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.722 0.056 0.925 0.722 0.811 0.833 cal
0.944 0.278 0.78 0944 0.854 0.833 dor
W Avg. 0.835 0.17 0.851 0.835 0.833 0.833

=== Confusion Matrix ===
a b <--classified as

135 52 | a=cal
11184 | b=dor



Unsupervised Learning

* Find patterns in the data.
* Group the data into clusters.

* Many clustering algorithms.
— K means clustering
— EM clustering
— Graph-Theoretic Clustering
— Clustering by Graph Cuts
— etc

41




Clustering by K-means Algorithm

Form K-means clusters from a set of n-dimensional feature vectors
1. Set ic (iteration count) to 1
2. Choose randomly a set of K means m,(1), ..., m(1).

3. For each vector x;, compute D(x;,m,(ic)), k=1,...K
and assign x; to the cluster C; with nearest mean.

4. Increment ic by 1, update the means to get m,(ic),...,m(ic).

5. Repeat steps 3 and 4 until C,(ic) = C,(ic+1) for all k.

A A A

v
v
v
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K-Means Classifier
(shown on RGB color data)

original data color clusters
one RGB per pixel

43



K-Means > EM

The clusters are usually Gaussian distributions.

* Boot Step:

— Initialize K clusters: C,, ..., Cy
(4 2,) and P(C)) for each cluster ;. A\ -
* [teration Step:

— Estimate the cluster of each datum
p(C; | x) mm) Expectation

— Re-estimate the cluster parameters

mm) Maximization
(1;,2;), p(C;) For each cluster j

The resultant set of clusters is called a mixture model:
If the distributions are Gaussian, it's a Gaussian mixture.44



EM Algorithm Summary

Boot Step:

— Initialize K clusters: C,, ..., Cy
(14 X)) and p(C)) for each cluster ;.
Iteration Step:

— EXpectation Step
p(xi|Cj)'p(Cj): p(xi|Cj)'p(Cj)
p(x;) 2. P(x1C))-p(C))

p(Cj |Xi):

— Maximization Step

Zp(Cj|Xi)-Xi Zp(Cj|Xi)°(xi_ﬂj)’(xi_ﬂj)T

H;j

2. p(C;1%)

) ZP(CHXO i = Zp(cj|xi) P(Cy) == N

45



EM Clustering using color and texture

information at each pixel
(from Blobworld)

46



EM for Classification of Images in Terms of
their Color Regions

Initial Model for “trees” Final Model for “trees”

@

Initial Model for “sky”

=

Final Model for “sky”




Sample Results

cheetah

48



Sample Results (Cont.)

rasSs

49



)

Sample Results (Cont
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Haar Random Forest Features Combined
with a Spatial Matching Kernel for
Stonefly Species ldentification

Natalia Larios*
Bilge Soran*

Linda Shapiro*
Gonzalo Martinez-Munoz”?
Jeffrey Lin+
Tom Dietterich+

*University of Washington
+Oregon State University
AUniversidad Autonoma de Madrid
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Goal: to identify the species of insect
specimens rapidly and accurately

52



Haar-like Features

1=€¢3

L= ¢
R RO

Value =
> (pixels in white area) —
> (pixels in black area)




Overview of our Classification Method

Training Image Set Patch
Positive and Negative extraction

J Testing

Test Image

Patches

_______ L HRF Feature
Extraction

Forest
Learning

‘ Test Image
HRF Feature Sealileis
Extraction

l -->[ Classification ]

Training SVM
Vectors Learning Prediction
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RESULTS:
Stonefly Identification: Classification Error [%]

Task SET CIELAB CIELAB+G
color
Cal vs Dor 6.26 10.16 460 96.4% accuracy
Hes vs Iso 3.74 9.05 3.55
Pte vs Swe 2.71 8.75 2.80
Dor vs Hes 2.25 8.09 2.20
Mos vs Pte 2.06 7.95 1.92
Yor vs Zap 1.52 6.89 1.60
Zap vs Cal 1.52 7.02 1.76
Swe vs Yor 1.44 6.85 1.50
Iso vs Mos 1.29 6.90 1.30
Average 2.53 7.96 2.25
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