
More on Learning

• Neural Nets

• Support Vectors Machines

• Unsupervised Learning (Clustering)

– K-Means

– Expectation-Maximization



2

Neural Net Learning

• Motivated by studies of the brain.

• A network of “artificial neurons” that learns a function.

• Doesn’t have clear decision rules like decision trees, but 
highly successful in many different applications. (e.g. face 
detection)

• We use them frequently in our research.

• I’ll be using algorithms from
http://www.cs.mtu.edu/~nilufer/classes/cs4811/2016-
spring/lecture-slides/cs4811-neural-net-algorithms.pdf

http://www.cs.mtu.edu/~nilufer/classes/cs4811/2016-spring/lecture-slides/cs4811-neural-net-algorithms.pdf






Simple Feed-Forward Perceptrons

x1

x2



W1

W2

g(in) out

in = (∑ Wj xj) + 
out = g[in]

g is the activation function

It can be a step function:
g(x) = 1 if x >=0 and 0 (or -1) else.

It can be a sigmoid function:
g(x) = 1/(1+exp(-x)).

The sigmoid function is differentiable
and can be used in a gradient descent
algorithm to update the weights.





More Complete Functions (for Deep 
Learning)

• Sigmoid: σ(x) = 1/(1 + e-x)

• ReLU function (rectifiead linear unit)

ReLU(x) = max(0,x)

• Softplus function is a smooth version of the ReLU
function:

softplus(x) = log(1+ex)

• The derivative of softplus is sigmoid.

• Tanh function:

tanh(x) = (e2x-1)/(e2x+1)





Gradient Descent
takes steps proportional to the negative of the gradient of a function 

to find its local minimum

• Let X be the inputs, y the class, W the weights
• in = ∑ Wj xj

• Let’s minimize the loss. We’ll call it Err for short.
• Err = y – g(in)
• E = ½ Err2 is the squared loss to minimize
• E/Wj = Err * Err/Wj = Err * /Wj(g(in))(-1)

= -Err * g’(in) * xj

• The update is Wj <- Wj + α * Err * g’(in) * xj

• α is called the learning rate.



Simple Feed-Forward Perceptrons

x1

x2



W1

W2

g(in) out

repeat
for each e in examples do

in = (∑ Wj xj) + 
Err = y[e] – g[in]
Wj = Wj + α Err g’(in) xj[e]

until done

Examples: A=[(.5,1.5),+1], B=[(-.5,.5),-1], C=[(.5,.5),+1]
Initialization: W1 = 1, W2 = 2,  = -2

Note1: when g is a step function, the g’(in) is removed.
Note2: later in back propagation, Err * g’(in) will be called   
We’ll let g(x) = 1 if x >=0 else -1



Graphically

Examples: A=[(.5,1.5),+1], B=[(-.5,.5),-1], C=[(.5,.5),+1]
Initialization: W1 = 1, W2 = 2,  = -2

W1

W2

A

CB

wrong
boundary

Boundary is W1x1 + W2x2 +  = 0



Learning
Examples: 
A=[(.5,1.5),+1], 
B=[(-.5,.5),-1], 
C=[(.5,.5),+1]
Initialization: W1 = 1, W2 = 2,  = -2

A=[(.5,1.5),+1]
in = .5(1) + (1.5)(2) -2 = 1.5
g(in) = 1; Err = 0; NO CHANGE

B=[(-.5,.5),-1]
In = (-.5)(1) + (.5)(2) -2 = -1.5
g(in) = -1; Err = 0; NO CHANGE

C=[(.5,.5),+1]
in = (.5)(1) + (.5)(2) – 2 = -.5
g(in) = -1; Err = 1-(-1)=2

Let α=.5

W1 <- W1 + .5(2) (.5)   leaving out g’
<- 1 + 1(.5) = 1.5

W2 <- W2 + .5(2) (.5)
<- 2 + 1(.5) = 2.5

 <-  + .5(+1 – (-1))
 <- -2 + .5(2) = -1

repeat
for each e in examples do

in = (∑ Wj xj) + 
Err = y[e] – g[in]
Wj = Wj + α Err g’(in) xj[e]

until done



Graphically
Examples: A=[(.5,1.5),+1], B=[(-.5,.5),-1], C=[(.5,.5),+1]
Initialization: W1 = 1, W2 = 2,  = -2
New: : W1 = 1.5, W2 = 2.5,  = -1

W1

W2

a

A

CB

wrong
boundary

Boundary is W1x1 + W2x2 +  = 0

approximately correct boundary



vector W
p1 b

error
new W



new W                p2







Back Propagation

• Simple single layer networks with feed 
forward learning were not powerful enough.

• Could only produce simple linear classifiers.

• More powerful networks have multiple hidden 
layers.

• The learning algorithm is called back 
propagation, because it computes the error at 
the end and propagates it back through the 
weights of the network to the beginning.



Let’s break it
into steps.

(slightly different from text)



Let’s dissect it.

x1

x2

x3

n1

n2

layer 1                   2                    3=L

nf

w11

w21

w31

w1f

w2f



Forward Computation

x1

x2

x3

n1

n2

layer 1                   2                    3=L

nf

w11

w21

w31

w1f

w2f
af

a1

a2



Backward Propagation 1

x1

x2

x3

n1

n2

layer 1                   2                    3=L

nf

w11

w21

w31

w1f

w2f

• Node nf is the only node in our output layer. 
• Compute the error at that node and multiply by the derivative of the weighted

input sum to get the change delta.



Backward Propagation 2

x1

x2

x3

n1

n2

layer 1                   2                    3=L

nf

w11

w21

w31

w1f

w2f

• At each of the other layers, the deltas use
• the derivative of its input sum
• the sum of its output weights
• the delta computed for the output error 

Δf is at output layer

Δ2  g’(in2)  w2f Δf  



Backward Propagation 3

x1

x2

x3

n1

n2

layer 1                   2                    3=L

nf

w11

w21

w31

w1f

w2f

Now that all the deltas are defined, the weight updates just use them.



Back Propagation Summary

• Compute delta values for the output units 
using observed errors.

• Starting at the output-1 layer
– repeat

• propagate delta values back to previous layer

• update weights between the two layers

– till done with all layers

• This is done for all examples and multiple 
epochs, till convergence or enough iterations.



Time taken to build model: 16.2 seconds

Correctly Classified Instances         307               80.3665 % (did not boost)
Incorrectly Classified Instances        75               19.6335 %
Kappa statistic                          0.6056
Mean absolute error                      0.1982
Root mean squared error                  0.41  
Relative absolute error                 39.7113 %
Root relative squared error             81.9006 %
Total Number of Instances              382     

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
0.706     0.103      0.868     0.706     0.779      0.872    cal
0.897     0.294      0.761     0.897     0.824      0.872    dor

W Avg.    0.804     0.2        0.814     0.804     0.802      0.872

=== Confusion Matrix ===

a   b   <-- classified as
132  55 |   a = cal
20 175 |   b = dor





28

Kernel Machines 

• A relatively new learning methodology (1992) derived from 
statistical learning theory.

• Became famous when it gave accuracy comparable to neural 
nets in a handwriting recognition class.

• Was introduced to computer vision researchers by Tomaso 
Poggio at MIT who started using it for face detection and got 
better results than neural nets.

• Has become very popular and widely used with packages 
available.



29

Support Vector Machines (SVM)

• Support vector machines are learning algorithms 

that try to find a hyperplane that separates 

the different classes of data the most.

• They are a specific kind of kernel machines based on 

two key ideas:

• maximum margin hyperplanes 

• a kernel ‘trick’



The SVM Equation

• ySVM(xq) = argmax Σ αi,c K(xi,xq)

• xq is a query or unknown object

• c indexes the classes

• there are m support vectors xi with weights 

αi,c, i=1 to m for class c

• K is the kernel function that compares xi to 

xq

c            i=1,m



31

Maximal Margin (2 class problem)

Find the hyperplane with maximal margin for all

the points. This originates an optimization problem

which has a unique solution.

hyperplane

margin

In 2D space,

a hyperplane is

a line.

In 3D space,

it is a plane.



32

Support Vectors

• The weights i associated with data points are zero, 
except for those points closest to the separator.

• The points with nonzero weights are called the 
support vectors (because they hold up the separating 
plane).

• Because there are many fewer support vectors than 
total data points, the number of parameters defining 
the optimal separator is small.



33



Kernels

• A kernel is just a similarity function. It takes 2 
inputs and decides how similar they are.

• Kernels offer an alternative to standard 
feature vectors. Instead of using a bunch of 
features, you define a single kernel to decide 
the similarity between two objects.

34



Kernels and SVMs

• Under some conditions, every kernel function 
can be expressed as a dot product in a 
(possibly infinite dimensional) feature space 
(Mercer’s theorem)

• SVM machine learning can be expressed in 
terms of dot products.

• So SVM machines can use kernels instead of 
feature vectors.

35



36

The Kernel Trick

The SVM algorithm implicitly maps the original

data to a feature space of possibly infinite dimension

in which data (which is not separable in the

original  space) becomes separable in the feature space.

0
0

0
0

01

1 1

Original space Rk

0

0
0

0
0

1

1

1

Feature space Rn

1

1Kernel

trick



37

Kernel Functions

• The kernel function is designed by the 
developer of the SVM.

• It is applied to pairs of input data to evaluate 
dot products in some corresponding feature 
space.

• Kernels can be all sorts of functions including 
polynomials and exponentials.



38

Kernel Function used in our 3D Computer 
Vision Work

• k(A,B) = exp(-2
AB/2)

• A and B are shape descriptors (big 
vectors).

•  is the angle between these 
vectors. 

• 2 is the “width” of the kernel.



What does SVM learning  solve?

• The SVM is looking for the best separating plane in its 
alternate space.

• It solves a quadratic programming optimization problem 

argmax Σαj-1/2 Σαj αk yj yk (xj•xk)

subject to αj > 0 and Σαjyj = 0.

• The equation for the separator for these optimal αj is

h(x) = sign(Σαj yj (x•xj) – b)

39

α j               j,k

j



Time taken to build model: 0.15 seconds

Correctly Classified Instances         319               83.5079 %
Incorrectly Classified Instances        63               16.4921 %
Kappa statistic                          0.6685
Mean absolute error                      0.1649
Root mean squared error                  0.4061
Relative absolute error                 33.0372 %
Root relative squared error             81.1136 %
Total Number of Instances              382     

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
0.722     0.056      0.925     0.722     0.811      0.833    cal
0.944     0.278      0.78     0.944     0.854      0.833    dor

W Avg.    0.835     0.17     0.851     0.835     0.833      0.833

=== Confusion Matrix ===

a   b   <-- classified as
135  52 |   a = cal
11 184 |   b = dor



41

Unsupervised Learning

• Find patterns in the data.

• Group the data into clusters.

• Many clustering algorithms.

– K means clustering

– EM clustering

– Graph-Theoretic Clustering

– Clustering by Graph Cuts

– etc



42

Clustering by K-means Algorithm
Form K-means clusters from a set of n-dimensional feature vectors

1. Set ic (iteration count) to 1

2. Choose randomly a set of K means m1(1), …, mK(1).

3. For each vector xi, compute D(xi,mk(ic)), k=1,…K

and assign xi to the cluster Cj with nearest mean.

4.  Increment ic by 1, update the means to get m1(ic),…,mK(ic).

5. Repeat steps 3 and 4 until Ck(ic) = Ck(ic+1) for all k.



43

K-Means Classifier
(shown on RGB color data)

original data

one RGB per pixel
color clusters



44

K-Means → EM
The clusters are usually Gaussian distributions.

• Boot Step:
– Initialize K clusters: C1, …, CK

• Iteration Step:
– Estimate the cluster of each datum

– Re-estimate the cluster parameters

(j, j) and P(Cj) for each cluster j.  

)|( ij xCp

)(),,( jjj Cp For each cluster j

Expectation

Maximization

The resultant set of clusters is called a mixture model;

if the distributions are Gaussian, it’s a Gaussian mixture.



45

EM Algorithm Summary

• Boot Step:
– Initialize K clusters: C1, …, CK

• Iteration Step:
– Expectation Step

– Maximization Step

(j, j) and p(Cj) for each cluster j.  

 


=


=

j

jji

jji

i

jji

ij
CpCxp

CpCxp

xp

CpCxp
xCp

)()|(

)()|(

)(

)()|(
)|(



 −−

=

i

ij

T

jiji

i

ij

j
xCp

xxxCp

)|(

)()()|( 



 

=

i

ij

i

i

ij

j
xCp

xxCp

)|(

)|(


N

xCp

Cp i

ij

j


=

)|(

)(



46

EM Clustering using color and texture 
information at each pixel

(from Blobworld)



47

Final Model for “trees”

Final Model for “sky”

EM

EM for Classification of Images in Terms of 
their Color Regions

Initial Model for “trees”

Initial Model for “sky”



48

cheetah

Sample Results



49

Sample Results (Cont.)

grass



50

Sample Results (Cont.)

lion



Haar Random Forest Features Combined 
with a Spatial Matching Kernel for 

Stonefly Species Identification 

Natalia Larios*

Bilge Soran*

Linda Shapiro*

Gonzalo Martinez-Munoz^

Jeffrey Lin+

Tom Dietterich+

*University of Washington

+Oregon State University

^Universidad Autónoma de Madrid

51



Goal: to identify the species of insect 
specimens rapidly and accurately

52



Haar-like Features

Value =  
∑ (pixels in white area) –
∑ (pixels in black area)



Testing

Overview of our Classification Method

SVM

SVM 
Learning

Training  Image Set
Positive and Negative

HRF

Patch       
extraction

HRF Feature 
Extraction

Test Image 
Patches 

Classification

Test Image 
Features

Prediction
Training 
Vectors

Forest     
Learning

54

Image 
Patches

HRF Feature 
Extraction



RESULTS:
Stonefly Identification: Classification Error [%]

55

Task SET
CIELAB 

color
CIELAB+G

Cal vs Dor 6.26 10.16 4.60

Hes vs Iso 3.74 9.05 3.55

Pte vs Swe 2.71 8.75 2.80

Dor vs Hes 2.25 8.09 2.20

Mos vs Pte 2.06 7.95 1.92

Yor vs Zap 1.52 6.89 1.60

Zap vs Cal 1.52 7.02 1.76

Swe vs Yor 1.44 6.85 1.50

Iso vs Mos 1.29 6.90 1.30

Average 2.53 7.96 2.25

96.4% accuracy


