
Computer-Aided Diagnosis 
Using Whole Slide Images

Linda G. Shapiro, Ph.D.

Paul G. Allen School of Computer Science & Enginnering

Department of Electrical and Computer Engineering

Department of Biomedical Informatics and Medical Education

University of Washington



Breast Cancer Research

• With PI Dr. Joann Elmore under the “Digipath” grant, R01-CA172343

• Most of the work performed by Dr. Ezgi Mercan, now at Children’s Hospital 
and Research Institute.

• Ezgi’s dissertation covered multiple aspects of our study including:

1. Region of interest detection

2. Semantic segmentation into histopathological classes

3. Feature extraction and diagnosis

4. Region of interest identification and diagnostic concordance

5. Characterization of diagnostic search patterns: drillers vs. scanners



Medical Diagnosis of Cancer

tissue specimen H&E staining glass slide

whole slide imaging
light microscope
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Breast Histopathology
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columnar cell change usual ductal hyperplasia intraductal papillomaductal carcinoma in situ (DCIS)invasive carcinoma
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papilloma w/atypia atypical ductal hyperplasia flat epithelial atypia
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Tissue Label Segmentation 

• For an automated diagnosis system, we need to describe 
the structural changes that lead to cancer. 

• Segmentation is a powerful that provides information about 
the distribution and arrangement of different tissue types.

6
S. Mehta, E. Mercan, et al., British Machine Vision Conference, 2017 (submitted). 
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color (L*a*b) and 
texture (LBP) 
histograms

superpixel clusters

superpixel segmentation 
of an ROI

• Each superpixel cluster can be identified as a 
biologically meaningful building block of the tissue.
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Superpixel Clustering 
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Superpixel Clustering 

• Patterns emerge when we label the superpixels in an 
unsupervised manner.
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benign atypia DCIS
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Supervised Tissue Label 
Segmentation
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original image
ground truth 
label image

We tested two models using a subset of ROIs (N=58):
• Support Vector Machines (SVM)
• Convolutional Neural Nets (CNN)

classifier
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Training Labels
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Superpixel + SVM-based 
Segmentation
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CNN-based Segmentation

joint work with Sachin Mehta

Segmentation

384 × 384
256 × 256

256 ×256

Input Image

Encoder-DecoderEncoder-Decoder

Segmentation

256 ×256

PlainGround Truth Multi-Resolution
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ROI

Overlapping Patches
256x256 pixel

CNN
Segmented Patches

Segmented ROI

Training set: 38 ROIs 
Test set: 20 ROIs

CNN-based Segmentation



Supervised Tissue Label 
Segmentation

• Each superpixel is assigned 
a class label.

• Context: Two circular 
neighborhoods

• Relatively simple model

• Faster to train (~3 hours)

• Each pixel is assigned a 
class label.

• Context: 256x256 and 
384x384 pixel patches 

• More complex model

• ~1 week to train on special 
hardware
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Superpixel + SVM CNN
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Recall

Mean F1-score

SP+SVM 0.40

CNN 0.50

Results
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Semantic Segmentation of Tissue Classes



Automated Diagnosis of ROIs

• Diagnostic errors are alarmingly high for pre-invasive lesions 
of the breast.

• In the digiPATH study, the agreement between pathologists 
and experts for the atypia cases is only 48%.

• Novel image features for diagnosis can help
• develop computer aided diagnosis systems, and

• study the reasons for diagnostic errors.
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1. Introduction      2. ROI Localization     3. Tissue Segmentation     4. Automated Diagnosis    5.Viewing Behavior Analysis     6. Conclusions



Features of the whole ROI: Frequency and 
Co-occurrence of tissue labels



Structure Feature
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duct layer
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Concentration of areas around and inside of 
ducts for breast cancer analysis
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Melanoma Biopsy Analysis

• Melanoma biopsy slides are more difficult than breast biopsy slides.

• Cancerous areas can occur in multiple different areas; there is nothing 
equivalent to a duct to look for.

• Melanocytes may be cancerous or not depending on where they are, 
how many, and their size and appearance.

• The image we included in our first proposal was perhaps naïve.
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Evaluation
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sensitivity

# 𝑡𝑝 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
# 𝑡𝑛 = 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
# 𝑓𝑝 = 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
# 𝑓𝑛 = 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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Each ROI is a sample.



Experiments

• We subsampled the training data for a uniform distribution 
of all classes.

• We trained SVMs with different features

• We ran 10-fold cross-validation experiments for the 4 
classification tasks:

27
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Results – Accuracies 
Average Accuracy

Invasive vs.
Non-invasive

Atypia & DCIS
vs. Benign

DCIS vs. Atypia 4-class

Participant Pathologists .98 .81 .80 .70

Freq. and Cooc. Hist. .94 .70 .83 .46

Structure Feature .91 .70 .85 .56
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HatNet

• We have one completed program that was developed for breast 
cancer, and was just published in a journal for that, but is now 
starting to show its first results on melanoma cancer.

• HatNet is the work of Sachin Mehta, a senior Ph.D. student in ECE, 
who is jointly advised by Hannenah Hajishirzi and me. He specializes 
in convolutional neural networks.

• HatNet is based on the concept of transformers, which comes from 
natural language processing.

• Sachin has extended it to medical images in a hierarchical approach.



HatNet Overview

• The biopsy image is broken into bags and the bags into words.  

• The words are input to a convolutional neural network (CNN) which 
converts the raw words to features. 

• Next, transformers are used at multiple levels to look at word-word 
attention, word-bag attention, bag-bag attention, and finally bag-
image attention.

• At the bag-to-image level, a simple vector of weights is produced and 
from it, classification is performed.

Image into bags

Bag into words



The HatNet Architecture



Transformer

• The transformer takes the input (words and bags, in this case) and applies three 
projections to obtain query (Q), key (K), and value (V ) representations. 

• The query and key representations are used to compute the score for each input
with respect to other inputs using a dot-product (QKT ) and a softmax operation. 

• The resultant scores are then combined with the value representation (V ) to produce 
the weighted sum, which is of the same dimensionality as the input.

transformer

all words all weighted words



First three steps of HatNet

For each
bag so n
of them



Last 3 steps

• Step 4. The Bag-Bag Attention Module, uses a transformer to 
assign weights to the bags. 

• Step 5. The Bag-Image Attention module begins with the n x d 
attention matrix output by the Bag-Bag Module and, like the 
Word-Bag Module, performs projections on two different 
dimensions (n and d) and produces a vector of d weights as 
the image-level representation.

• Step 6. A fully-connected layer takes in this vector and outputs 
the diagnosis.



Examples of selected bags and words



Examples of HatNet identifying Stroma Tissue

Top 50% words shown in pink (stroma) and blue (other) on the right. Pathologists labeling of stroma shown at center.



Hatnet Accuracies

• Breast Cancer—our 4 class data set, accuracy on 4-class problem

• Melanoma Cancer – 5 classes reduced to 4 with I and II combined is up to about 
.53 accuracy currently.



Summary

• We have done a LOT of work on breast cancer and are just starting to 
get results on melanoma cancer

• Our HatNet breast cancer on the 4-class problem is at .70.

• Our HatNet melanoma on the full 4-class problem is at .53- but is only 
getting started.


