
Python

Tutorial Lecture for EE562

Artificial Intelligence for Engineers

1

Why Python for AI?

• For many years, we used Lisp, because it handled lists
and trees really well, had garbage collection, and didn’t
require type declarations.

• Lisp and its variants finally went out of vogue, and for a
while, we allowed any old language, usually Java or
C++. This did not work well. The programs were big and
more difficult to write.

• A few years ago, the AI faculty started converting to
Python. It has the object-oriented capabilities of Java
and C++ with the simplicity for working with list and
tree structures that Lisp had with a pretty nice, easy-to-
use syntax. I learned it with very little work.

2

Getting Started

• Download and install Python from
www.python.org onto your computer. EE is
updating to use Python 3. Python 2.7 works fine
for plain search programs. We’ll let you know
about the game interface.

• Read “Python as a Second Language,” a tutorial
that Prof. Tanimoto wrote for CSE 415 students:

• https://courses.cs.washington.edu/courses/cse41
5/18wi/uwnetid/Tanimoto-PSL.pdf

3

http://www.python.org/
https://courses.cs.washington.edu/courses/cse415/18wi/uwnetid/Tanimoto-PSL.pdf

Python Data Types

• int 105
• float 3.14159
• str “Selection:”, ‘a string’
• bool True, False
• list [‘apple’, ‘banana’, ‘orange’]
• tuple (3.2, 4.5, 6.3)
• dict {‘one’: 1, ‘two’: 2}
• function lambda x:2*x
• builtin_function_ math.sqrt

or_method

4

Interacting with Python

5

$ python
Python 2.7.5 (default, Nov 12 2013, 16:18:42)
[GCC 4.8.2 20131017 (Red Hat 4.8.2-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> 5 + 7
12
>>> x = 5 + 7
>>> x
12
>>> print('x = '+str(x))
x = 12
>>> x = 'apple'
>>> x + x
'appleapple'
>>> print('x is an '+x)
x is an apple

Defining Functions

6

>>> def sqr(x):
... return x*x
...
>>> sqr(5)
25
>>> sqr(75)
5625
>>> sqr(3.14)
9.8596
>>> sqr('notanumber')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in sqr

TypeError: can't multiply sequence by non-int of type 'str'

You have to indent the lines of the function

Nice trace for execution errors.

Defining a Recursive Function

7

>>> def factorial(n):
... if n < 1:
... return 0
... if n == 1:
... return 1
... return n * factorial(n-1)
...
>>>
>>> factorial(3)
6
>>> factorial(10)
3628800
>>> factorial(-1)
0

Bad Version:
>>>def fact(n):

if n==1:
return 1

else:
return n * fact(n-1)

File "<stdin>", line 5, in fact
...
File "<stdin>", line 5, in fact
File "<stdin>", line 5, in fact

RuntimeError: maximum recursion
depth exceeded

Scopes of Bindings:
In general, declare global variables to save worry,

required if you change them.

8

Global y not needed here and
we have two different z’s.

>>> x = 5
>>> y = 6
>>> z = 7
>>> def fee(x):
... z = x + y
... return z
...
>>> r = fee(2)
>>> r
8

Global y used here to change y
inside the function.

>>> def foo(x):
... global y
... z = x + y
... y = y + 1
... return z
...
>>> q = foo(2)
>>> q
8
>>> y
7

Lists

• We use lists heavily in AI.

• Lisp lists had two parts:

– car (the head or first element of the list)

– cdr (the tail or remainder of the list)

• Python is MUCH more versatile.

• Lists are like arrays in that you can refer to any
element and yet you can also work with the
head and tail and much more.

9

Lists

10

>>> mylist = ['a', 'b', 'c']
>>> mylist[0]
'a‘
>>> mylist[1]
'b'
>>> mylist[1:]
['b', 'c']
>>> mylist[2:]
['c']
>>> mylist[-1]
'c‘
>>> mylist.insert(3,'d')
>>> mylist
['a', 'b', 'c', 'd']

car (or head)

cdr (or tail)

append

How do you insert at the beginning?

Slices of Lists

11

>>> mylist
['a', 'b', 'c', 'd']
>>> len(mylist)
4
>>> mylist[0:len(mylist)]
['a', 'b', 'c', 'd']
>>> mylist[0:len(mylist):2]
['a', 'c']
>>> mylist[::-1]
['d', 'c', 'b', 'a']
>>> mylist[1:]
?

go through mylist by ones

go through mylist by twos

go through mylist in reverse

Iterating through Lists

12

>>> for e in mylist:
... print('element is '+e)
...
element is a
element is b
element is c
element is d

>>> count = 0
>>> while count < len(mylist):
... print(mylist[count])
... count += 1
...
a
b
c
d

Strings

13

Strings work a lot like lists!

>>> mystring = 'abcd'
>>> mystring
'abcd'
>>> mystring[0]
'a'
>>> mystring[0:2]
'ab'
>>> mystring[-1]
'd'
>>> mystring[::-1]
'dcba'

Dictionaries

14

Dictionaries give us look-up table capabilities.
>>> translate = {}
>>> translate['I'] = 'Ich'
>>> translate['go'] = 'gehe'
>>> translate['to'] = 'zu'
>>> translate['doctor'] = 'Artz'
>>> translate['the'] = 'der'
>>> print(translate['I'])
Ich

How can we print the translation of
I go to the doctor?

Is it correct German?

Functional Programming

• Functions can be values that are assigned to
variables or put in lists.

• They can be arguments to or returned by
functions.

• They can be created dynamically at run time
and applied to arguments.

• They don’t have to have names.

• This is like the lambda capability of Lisp

15

Example of Function Creation

16

>>> def make_adder(y):
... return lambda x: x + y
...
>>> f4 = make_adder(4)
>>> f4(5)
9
>>> f7 = make_adder(7)
>>> f7(5)
12

This is actually pretty tame. One can construct strings
and make them into functions, too.

What does this mean?

Object-Oriented Programming

17

Unlike Lisp, Python is an object-oriented language, so
you can program much as you did in Java.

class Coord:
"2D Point Coordinates"
def __init__(self, x=0, y=0):

self.x = x
self.y = y

#
def describe(self):

return '('+str(self.x)+','+str(self.y)+')'
#

def euclid(self,p2):
return ((self.x-p2.x)**2+(self.y-p2.y)**2)**0.5

18

>>> p1 = Coord(3,5)
>>> p2 = Coord(2,7)
>>> p1.describe()
'(3,5)'
>>> p2.describe()
'(2,7)'
>>> p1.euclid(p2)
2.23606797749979
>>> p2.euclid(p1)
2.23606797749979

Using the Coord Object

Writing Methods

19

class Coord:
"2D Point Coordinates"
def __init__(self, x=0, y=0):

self.x = x
self.y = y

Write a method to add together
two points and return
a new point p3 = the sum of them

def add(self, p2):

Main Program with Command Line
Arguments

20

import sys
def add(a, b):

return a+b
#
if __name__=='__main__':

first = int(sys.argv[1])
second = int(sys.argv[2])
sum = add(first, second)
print(str(sum))

python try.py 4 5

9

I stored this in file try.py

