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Goal 
• We are interested in  developing algorithms for 

recognizing and classifying deformable object 
shapes from range data. 
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 This is a  difficult problem that is relevant in 
several application fields. 
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Applications 
•  Computer Vision: 
 - Scene analysis 
 - Industrial Inspection 
 - Robotics 
    
• Medical Diagnosis:   

- Classification and  
- Detection of  craniofacial deformations.  
 
 



Basic Idea 

  
• Generalize existing numeric surface 

representations   for  matching 3-D objects 
to the problem of identifying shape classes. 
 



Alignment-Verification Limitations  

The  approach does not extend well to the problem 
 of identifying classes of similar shapes.  In general: 
 
• Numeric shape representations are not robust 

to deformations. 
• There are not exact correspondences between 

model and scene. 
• Objects in a shape class do not align. 



Component-Based Methodology 
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Numeric Signatures 
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The Spin Image Signature 
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P is the selected vertex. 
 
X is a contributing point 
    of the mesh. 
 
 
 
 
 
α is the perpendicular distance from X to P’s surface normal. 
 
β is the signed perpendicular distance from X to P’s tangent plane. 

tangent plane at P 



Spin Image Construction 

•  A spin image is constructed 
    - about a specified oriented point o of the object surface 
    -  with respect to a set of contributing points C, which is 
       controlled by maximum distance and angle from o. 
 
•  It is stored as an array of accumulators S(α,β) computed via: 
 
•  For each point c in C(o) 
 
    1. compute α and β for c. 
    2. increment S (α,β)  o 



Numeric Signatures: Spin Images 

 
• Rich set of surface shape descriptors. 

 
• Their spatial scale can be modified  to include local and 

non-local surface  features.  
 

• Representation is robust to scene clutter and occlusions. 
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Components 
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How To Extract Shape Class Components? 
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Component Extraction Example 
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How To Combine Component  
Information? 
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Note: Numeric signatures are invariant to mirror symmetry; 
our approach preserves such an invariance. 



Symbolic Signatures 
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Symbolic Signature 
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Symbolic Signature Construction 
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Symbolic Signatures Are Robust  
To Deformations 
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Relative position of components 
is  stable across deformations: 

experimental evidence 



Architecture of Classifiers 
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Architecture Implementation 

• ALL our classifiers are (off-the-shelf) ν-
Support Vector Machines (ν-SVMs) 
(Schölkopf et al., 2000 and 2001). 

• Component (and symbolic signature) 
detectors are one-class classifiers. 

• Component label assignment: performed 
with a   multi-way classifier that uses  
pairwise classification scheme.  

• Gaussian kernel.  



Experimental Validation 
Recognition Tasks: 4 (T1 - T4) 

Classification Tasks: 3 (T5 – T7) 
No. Experiments: 5470  
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Task 1: Recognizing Single  Objects 
(1) 

• No. Shape classes: 9. 
• Training set size: 400 meshes. 
• Testing set size: 200 meshes. 
• No. Experiments: 1960. 
• No. Component detectors:3. 
• No. Symbolic signature detectors: 1. 
• Numeric signature size: 40x40. 
• Symbolic signature size: 20x20. 
• No clutter and occlusion. 

 



Task 1: Recognizing Single  Objects 
(2) 

• Snowman: 93%. 
• Rabbit: 92%. 
• Dog: 89%. 
• Cat: 85.5%. 
• Cow: 92%. 
• Bear: 94%. 
• Horse: 92.7%. 

 

• Human head: 97.7%. 
• Human face: 76%. 

Recognition rates (true positives) 
(No clutter, no occlusion, complete models) 



Tasks 2-3: Recognition In Complex 
Scenes (1) 

• No. Shape classes: 3. 
• Training set size: 400 meshes. 
• Testing set size: 200 meshes. 
• No. Experiments: 1200. 
• No. Component detectors:3. 
• No. Symbolic signature detectors: 1. 
• Numeric signature size: 40x40. 
• Symbolic signature size: 20x20. 
• T2 – low clutter and occlusion. 

 



Task 2-3: Recognition in Complex 
Scenes (2) 

Shape 
Class 

True 
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Snowmen 91% 31% 87.5% 28% 

Rabbit 90.2% 27.6% 84.3% 24% 

Dog 89.6% 34.6% 88.12% 22.1% 

Task 2 Task 3 



Task 2-3: Recognition in Complex 
Scenes (3) 



Task 4: Recognizing Human Heads (1) 

• No. Shape classes: 1. 
• Training set size: 400 meshes. 
• Testing set size: 250 meshes. 
• No. Experiments: 710. 
• No. Component detectors:8. 
• No. Symbolic signature detectors: 2. 
• Numeric signature size: 70x70. 
• Symbolic signature size: 12x12. 
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Task 4: Recognizing Human Heads (3) 



Task 5: Classifying Normal vs. 
Abnormal Human Heads (1) 

• No. Shape classes: 6. 
• Training set size: 400 meshes. 
• Testing set size: 200 meshes. 
• No. Experiments: 1200. 
• No. Component detectors:3. 
• No. Symbolic signature detectors: 1. 
• Numeric signature size: 50x50. 
• Symbolic signature size: 12x12. 

 
 



Task 5: Classifying Normal vs. Abnormal 
Human Heads (1)  
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Task 6: Classifying Normal vs. Abnormal Human 
Heads In Complex Scenes(1) 

• No. Shape classes: 2. 
• Training set size: 400 meshes. 
• Testing set size: 200 meshes. 
• No. Experiments: 1200. 
• No. Component detectors:3. 
• No. Symbolic signature detectors: 1. 
• Numeric signature size: 100x100. 
• Symbolic signature size: 12x12. 

 
 



Task 6: Classifying Normal vs. Abnormal Human 
Heads In Complex Scenes(1) 
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Task 7: Classifying Normal vs. Abnormal 
Neurocranium (1) 

• No. Shape classes: 2. 
• Training set size: 400 meshes. 
• Testing set size: 200 meshes. 
• No. Experiments: 2200. 
• No. Component detectors:3. 
• No. Symbolic signature detectors: 1. 
• Numeric signature size: 50x50. 
• Symbolic signature size: 15x15. 

 
 



Task 7: Classifying Normal vs. Abnormal 
Neurocranium (2) 
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