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Goal

« We are interested in developing algorithms for
recognizing and classifying deformable object
shapes from range data.
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m This is a difficult problem that is relevant in
several application fields.



Applications

» Computer Vision:
- Scene analysis
- Industrial Inspection
- Robotics

* Medical Diagnosis:
- Classification and
- Detection of craniofacial deformations.



Basic Idea

* Generalize existing numeric surface
representations for matching 3-D objects
to the problem of identifying shape classes.



Alignment-Verification Limitations

The approach does not extend well to the problem
of identifying classes of similar shapes. In general:

* Numeric shape representations are not robust
to deformations.

* There are not exact correspondences between
model and scene.

« Objects in a shape class do not align.




Component-Based Methodology
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The Spin Image Signature

P is the selected vertex.

X is a contributing point X
of the mesh. n

tangent plane at P

a is the perpendicular distance from X to P's surface normal.

B is the signed perpendicular distance from X to P's tangent plane.



Spin Image Construction

* A spin image is constructed
- about a specified oriented point o of the object surface
- with respect to a set of contributing points C, which is
controlled by maximum distance and angle from o.

+ It is stored as an array of accumulators S(a,) computed via:
* For each point c in C(0)

1. compute o and B for c.
2. increment S (a,B)




Numeric Signatures: Spin Images
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Rich set of surface shape descriptors.

Their spatial scale can be modified to include local and
non-local surface features.

Representation is robust to scene clutter and occlusions.
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How To Extract Shape Class Components?
Training Set
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Component Extraction Example
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How To Combine Component
Information?

Extracted components on test samples

Note: Numeric signatures are invariant to mirror symmetry;
our approach preserves such an invariance.



Symbolic Signatures
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Symbolic Signhature
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Symbolic Signature Construction
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Symbolic Signatures Are Robust
To Deformations

%

Relative position of components
is stable across deformations:
experimental evidence



Architecture of Classifiers
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At Classification Time
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Architecture Implementation

e ALL our classifiers are (off-the-shelf) v-
Support Vector Machines (v-SVMs)
(Scholkopf et al., 2000 and 2001).

» Component (and symbolic signature)
detectors are one-class classifiers.

« Component label assignment: performed
with a multi-way classifier that uses
pairwise classification scheme.

e Gaussian kernel.



Experimental Validation

Recognition Tasks: 4 (T1 - T4)
Classification Tasks: 3 (T - T7)
No. Experiments: 5470
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Shape Classes




Enlarging Training Sets Using Virtual
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Task 1: Recognizing Single Objects
(1)

No. Shape classes: 9.

Training set size: 400 meshes.
Testing set size: 200 meshes.

No. Experiments: 1960.

No. Component detectors:3.

No. Symbolic signature detectors: 1.
Numeric signature size: 40x40.
Symbolic signature size: 20x20.

No clutter and occlusion.



Task 1: Recognizing Single Objects

(2)
Snowman: 93%. * Human head: 97.7%.
Rabbit: 92%. « Human face: 76%.
Dog: 89%.
Cat: 85.5%.
Cow: 92%.
Bear: 94%.

Horse: 92.7%.

Recognition rates (true positives)

(No clutter, no occlusion, complete models)



Tasks 2-3: Recognition In Complex
Scenes (1)

No. Shape classes: 3.

Training set size: 400 meshes.
Testing set size: 200 meshes.

No. Experiments: 1200.

No. Component detectors:3.

No. Symbolic signature detectors: 1.
Numeric signature size: 40x40.
Symbolic signhature size: 20x20.

T2 - low clutter and occlusion.



Task 2-3: Recognition in Complex

Scenes (2)
Shape | True False True False
Class |Positives | Positives | Positives | Positives
Snowmen 91% 31% 87.5% 28%
Rabbit 90.2% 27.6% 84.3% 24%
Dog 89.6% | 346% | 8812% | 22.1%
Task 2 Task 3
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Task 4: Recognizing Human Heads (1)

* No. Shape classes: 1.

* Training set size: 400 meshes.

« Testing set size: 250 meshes.

« No. Experiments: 710.

* No. Component detectors:8.

* No. Symbolic signature detectors: 2.
* Numeric sighature size: 70x70.

» Symbolic signature size: 12x12.



Task 4: Recognizing Human Heads

Recognition Rate
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Task 4: Recognizing Human Heads (3)




Task 5: Classifying Normal vs.
Abnormal Human Heads (1)

No. Shape classes: 6.

Training set size: 400 meshes.
Testing set size: 200 meshes.
No. Experiments: 1200.

No. Component detectors:3.
No. Symbolic signature detectors: 1.
Numeric signature size: 50x50.
Symbolic signature size: 12x12.



Task 5: Classifying Normal vs. Abnormal
Human Heads (1)

Classification
Accuracy %
Normal vs.
Abnormal 1
Normal vs.
Abnormal 2
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Abnormal 1 vs. “
Abnormal 1 vs. 4 -
Abnormal 1 vs. 5 -

Full models of Normal and Abnormal 1)

65%-35% 50%-50%  25%-75%
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Task 6: Classifying Normal vs. Abnormal Human
Heads In Complex Scenes(1)

* No. Shape classes: 2.

* Training set size: 400 meshes.

« Testing set size: 200 meshes.

* No. Experiments: 1200.

* No. Component detectors:3.

* No. Symbolic signature detectors: 1.
* Numeric signature size: 100x100.

» Symbolic signature size: 12x12.



Task 6: Classifying Normal vs. Abnormal Human
Heads In Complex Scenes(1)

Shape Classification
Classes Accuracy %

Normal vs. 88
Abnormal 1

Clutter < 15%
and occlusion < 50%




Task 7: Classifying Normal vs. Abnormal
Neurocranium (1)

No. Shape classes: 2.

Training set size: 400 meshes.
Testing set size: 200 meshes.

No. Experiments: 2200.

No. Component detectors:3.

No. Symbolic signature detectors: 1.
Numeric signature size: 50x50.
Symbolic sighature size: 15x15.



Task 7: Classifying Normal vs. Abnormal
Neurocranium (2)
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