Recognizing Deformable Shapes

Salvador Ruiz Correa Ph.D. UW EE

Goal

• We are interested in developing algorithms for recognizing and classifying deformable object shapes from range data.

This is a difficult problem that is relevant in several application fields.

Applications

- Computer Vision:
 - Scene analysis
 - Industrial Inspection
 - Robotics
- Medical Diagnosis:
 - Classification and
 - Detection of craniofacial deformations.

Basic Idea

 Generalize existing numeric surface representations for matching 3-D objects to the problem of identifying shape classes.

Alignment-Verification Limitations

The approach does not extend well to the problem of identifying classes of similar shapes. In general:

- Numeric shape representations are not robust to deformations.
- There are not exact correspondences between model and scene.
- Objects in a shape class do not align.

Component-Based Methodology

Numeric Signatures

The Spin Image Signature

P is the selected vertex.

 α is the perpendicular distance from X to P's surface normal.

 β is the signed perpendicular distance from X to P's tangent plane.

Spin Image Construction

- A spin image is constructed
 - about a specified oriented point o of the object surface
 - with respect to a set of contributing points C, which is controlled by maximum distance and angle from o.
- It is stored as an array of accumulators $S(\alpha,\beta)$ computed via:
- For each point c in C(o)

1. compute α and β for c. 2. increment S (α , β)

Numeric Signatures: Spin Images

Spin images for point P

- Rich set of surface shape descriptors.
- Their spatial scale can be modified to include local and non-local surface features.
- Representation is robust to scene clutter and occlusions.

Components

How To Extract Shape Class Components? Training Set

Grown components around seeds

Component Extraction Example

Region

Growing

Selected 8 seed points by hand

Labeled Surface Mesh

Grow one region at the time (get one detector per component) Detected components on a training sample

How To Combine Component Information?

Extracted components on test samples

Note: Numeric signatures are invariant to mirror symmetry; our approach preserves such an invariance.

Symbolic Signature

labels

Labeled Surface Mesh Symbolic Signature at P Critical Encode Point P Geometric Configuration 8 Matrix storing component

Symbolic Signature Construction

Symbolic Signatures Are Robust To Deformations

Relative position of components is stable across deformations: experimental evidence

Architecture of Classifiers

At Classification Time

Surface Mesh

Labeled Surface Mesh

Component

Classifiers

+1

Architecture Implementation

- ALL our classifiers are (off-the-shelf) v-Support Vector Machines (v-SVMs) (Schölkopf et al., 2000 and 2001).
- Component (and symbolic signature) detectors are one-class classifiers.
- Component label assignment: performed with a multi-way classifier that uses pairwise classification scheme.
- Gaussian kernel.

Experimental Validation

Recognition Tasks: 4 (T1 - T4) Classification Tasks: 3 (T5 - T7) No. Experiments: 5470

Rotary Table

Recognition

Setup

Laser

Classification

Shape Classes

Task 1: Recognizing Single Objects (1)

- No. Shape classes: 9.
- Training set size: 400 meshes.
- Testing set size: 200 meshes.
- No. Experiments: 1960.
- No. Component detectors: 3.
- No. Symbolic signature detectors: 1.
- Numeric signature size: 40x40.
- Symbolic signature size: 20x20.
- No clutter and occlusion.

Task 1: Recognizing Single Objects (2)

- Snowman: 93%.
- Rabbit: 92%.
- Dog: 89%.
- Cat: 85.5%.
- Cow: 92%.
- Bear: 94%.
- Horse: 92.7%.

- Human head: 97.7%.
- Human face: 76%.

Recognition rates (true positives)

(No clutter, no occlusion, complete models)

Tasks 2-3: Recognition In Complex Scenes (1)

- No. Shape classes: 3.
- Training set size: 400 meshes.
- Testing set size: 200 meshes.
- No. Experiments: 1200.
- No. Component detectors: 3.
- No. Symbolic signature detectors: 1.
- Numeric signature size: 40x40.
- Symbolic signature size: 20x20.
- T2 low clutter and occlusion.

Task 2-3: Recognition in Complex Scenes (2)

Shape Class	True Positives	False Positives	True Positives	False Positives
Snowmen	91%	31%	87.5%	28%
Rabbit	90.2%	27.6%	84.3%	24%
Dog	89.6%	34.6%	88.12%	22.1%

Task 3

Task 2

Task 2-3: Recognition in Complex Scenes (3)

Task 4: Recognizing Human Heads (1)

- No. Shape classes: 1.
- Training set size: 400 meshes.
- Testing set size: 250 meshes.
- No. Experiments: 710.
- No. Component detectors:8.
- No. Symbolic signature detectors: 2.
- Numeric signature size: 70x70.
- Symbolic signature size: 12x12.

Task 4: Recognizing Human Heads (2)

% Occlusion

% Clutter

FP rate: ~1%,

Task 4: Recognizing Human Heads (3)

Task 5: Classifying Normal vs. Abnormal Human Heads (1)

- No. Shape classes: 6.
- Training set size: 400 meshes.
- Testing set size: 200 meshes.
- No. Experiments: 1200.
- No. Component detectors: 3.
- No. Symbolic signature detectors: 1.
- Numeric signature size: 50x50.
- Symbolic signature size: 12x12.

Task 5: Classifying Normal vs. Abnormal Human Heads (1)

Shape Classes	Classification Accuracy %
Normal vs. Abnormal 1	98
Normal vs. Abnormal 2	100
Abnormal 1 vs. 3	98
Abnormal 1 vs. 4	97
Abnormal 1 vs. 5	92

Full models

2

5

(convex combinations of Normal and Abnormal 1) Task 6: Classifying Normal vs. Abnormal Human Heads In Complex Scenes(1)

- No. Shape classes: 2.
- Training set size: 400 meshes.
- Testing set size: 200 meshes.
- No. Experiments: 1200.
- No. Component detectors: 3.
- No. Symbolic signature detectors: 1.
- Numeric signature size: 100x100.
- Symbolic signature size: 12x12.

Task 6: Classifying Normal vs. Abnormal Human Heads In Complex Scenes(1)

Shape	Classification
Classes	Accuracy %
Normal vs. Abnormal 1	88

Clutter < 15% and occlusion < 50%

Range scenes - single view

Task 7: Classifying Normal vs. Abnormal Neurocranium (1)

- No. Shape classes: 2.
- Training set size: 400 meshes.
- Testing set size: 200 meshes.
- No. Experiments: 2200.
- No. Component detectors: 3.
- No. Symbolic signature detectors: 1.
- Numeric signature size: 50x50.
- Symbolic signature size: 15x15.

Task 7: Classifying Normal vs. Abnormal Neurocranium (2)

100 Experiments

Shape Classes	Classificatio n Accuracy %
Normal vs. Abnormal	89

No clutter and occlusion

Normal

Abnormal (sagittal synostosis)

Superimposed models