Cameras and Stereo

ECE P 596
Linda Shapiro

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point ($x^{\prime}{ }_{c}, y^{\prime}{ }_{c}$), pixel size (s_{x}, s_{y})
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{x}=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi} \mathbf{X}
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations
- The definitions of these parameters are not completely standardized
- especially intrinsics-varies from one book to another

Where does all this lead?

- We need it to understand stereo
- And 3D reconstruction
- It also leads into camera calibration, which is usually done in factory settings to solve for the camera parameters before performing an industrial task.
- The extrinsic parameters must be determined.
- Some of the intrinsic are given, some are solved for, some are improved.

Camera Calibration

The idea is to snap images at different depths and get a lot of 2D-3D point correspondences.

x1, y1, z1, u1, v1
$\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 1, \mathrm{u} 2$, v2

xn, yn, zn, un, vn
Then solve a system of equations to get camera parameters.

Stereo

Amount of horizontal movement is

...inversely proportional to the distance from the camera

Depth from Stereo

- Goal: recover depth by finding image coordinate x^{\prime} that corresponds to x

Depth from disparity

$$
\text { disparity }=x-x^{\prime}=\frac{B \cdot f}{z}
$$

Disparity is inversely proportional to depth.

Depth from Stereo

- Goal: recover depth by finding image coordinate x^{\prime} that corresponds to x
- Sub-Problems

1. Calibration: How do we recover the relation of the cameras (if not already known)?
2. Correspondence: How do we search for the matching point x^{\prime} ?

Correspondence Problem

- We have two images taken from cameras with different intrinsic and extrinsic parameters
- How do we match a point in the first image to a point in the second? How can we constrain our search?

Key idea: Epipolar constraint

Potential matches for x have to lie on the corresponding line l '.

Potential matches for x ' have to lie on the corresponding line l.

Epipolar geometry: notation

- Baseline - line connecting the two camera centers
- Epipoles
= intersections of baseline with image planes
$=$ projections of the other camera center
- Epipolar Plane - plane containing baseline (1D family)

Epipolar geometry: notation

- Baseline - line connecting the two camera centers
- Epipoles
= intersections of baseline with image planes
$=$ projections of the other camera center
- Epipolar Plane - plane containing baseline (1D family)
- Epipolar Lines - intersections of epipolar plane with image planes (always come in corresponding pairs)

Example: Converging cameras

Example: Motion parallel to image plane

Epipolar constraint

- If we observe a point \boldsymbol{x} in one image, where can the corresponding point \boldsymbol{x}^{\prime} be in the other image?

Epipolar constraint

- Potential matches for \boldsymbol{x} have to lie on the corresponding epipolar line l '.
- Potential matches for \boldsymbol{x} ' have to lie on the corresponding epipolar line \boldsymbol{l}.

Epipolar constraint example

Epipolar constraint: Calibrated case

- Assume that the intrinsic and extrinsic parameters of the cameras are known
- We can multiply the projection matrix of each camera (and the image points) by the inverse of the calibration matrix to get normalized image coordinates
- We can also set the global coordinate system to the coordinate system of the first camera. Then the projection matrices of the two cameras can be written as $[\mathbf{I} \mid \mathbf{0}]$ and $[\mathbf{R} \mid \mathbf{t}]$

Simplified Matrices for the 2 Cameras

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)=(\mathbf{I} \mid \mathbf{0}) \\
& \left(\begin{array}{l|l}
\mathbf{R} & \mathbf{t} \\
\hline \mathbf{0} & 1
\end{array}\right)=(\mathrm{R} \mid \mathrm{T})
\end{aligned}
$$

Epipolar constraint: Calibrated case

The vectors $R x, t$, and x ' are coplanar

Epipolar constraint: Calibrated case

Essential Matrix E (Longuet-Higgins, 1981)

The vectors $\boldsymbol{R} \boldsymbol{x}, \mathrm{t}$, and \boldsymbol{x} ' are coplanar

Epipolar constraint: Calibrated case

- $\boldsymbol{E} \boldsymbol{x}$ is the epipolar line associated with $\boldsymbol{x}\left(I^{\prime}=\boldsymbol{E} \boldsymbol{x}\right)$
- $\boldsymbol{E}^{\top} \boldsymbol{x}^{\prime}$ is the epipolar line associated with $\boldsymbol{x}^{\prime}\left(\boldsymbol{I}=\boldsymbol{E}^{\top} \boldsymbol{x}^{\prime}\right)$
- $\boldsymbol{E} \boldsymbol{e}=0$ and $\boldsymbol{E}^{\top} \boldsymbol{e}^{\prime}=0$
- \boldsymbol{E} is singular (rank two)
- E has five degrees of freedom

Epipolar constraint: Uncalibrated

case

Comparison of estimation

	8-point	Normalized 8-point	Nonlinear least squares
Av. Dist. 1	2.33 pixels	0.92 pixel	0.86 pixel
Av. Dist. 2	2.18 pixels	0.85 pixel	0.80 pixel

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
- Find corresponding epipolar scanline in the right image
- Search the scanline and pick the best match x^{\prime}
- Compute disparity $x-x^{\prime}$ and set depth $(x)=f B /\left(x-x^{\prime}\right)$

Stereo image rectification

Stereo image rectification

- Reproject image planes onto a common plane parallel to the line between camera centers
- Pixel motion is horizontal after this transformation
- Two homographies (3×3 transform), one for each input image reprojection
> C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Example

Unrectified

Rectified

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD, SAD, or normalized correlation

Correspondence search

Correspondence search

Norm. corr

Failures of correspondence search

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities

Results with window search
 Data

Window-based matching
Ground truth

Priors and constraints

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image
- Ordering
- Corresponding points should be in the same order in both views
- Smoothness
- We expect disparity values to change slowly (for the most part)

Real-time stereo

Nomad robot searches for meteorites in Antartica http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

- Used for robot navigation (and other tasks)
- Several software-based real-time stereo

Stereo reconstruction pipeline
 - Steps

- Calibrate cameras
- Rectify images
- Compute disparity
- Estimate depth

What will cause errors?

- Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- Low-contrast image regions

Using more than two images

Multi-View Stereo for Community Photo Collections M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz
 Proceedings of ICCV 2007,

