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We live in a moving world
• Perceiving, understanding and predicting motion is an 

important part of our daily lives



Motion and perceptual organization

• Even “impoverished” motion data can evoke a 
strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis", 
Perception and Psychophysics 14, 201-211, 1973.
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Seeing motion from a static picture?

http://www.ritsumei.ac.jp/~akitaoka/index-e.html



More examples



How is this possible?

• The true mechanism is yet 
to be revealed

• FMRI data suggest that  
illusion is related to some 
component of eye 
movements

• We don’t expect computer 
vision to “see” motion from 
these stimuli, yet



The cause of motion

• Three factors in imaging process
– Light

– Object

– Camera 

• Varying either of them causes motion
– Static camera, moving objects (surveillance)

– Moving camera, static scene (3D capture)

– Moving camera, moving scene (sports, movie)

– Static camera, moving objects, moving light (time lapse)



Motion scenarios (priors)

Static camera, moving scene Moving camera, static scene

Moving camera, moving scene Static camera, moving scene, moving light



We still don’t touch these areas



How can we recover motion?



Recovering motion

• Feature-tracking
– Extract visual features (corners, textured areas) and “track” them over 

multiple frames

• Optical flow
– Recover image motion at each pixel from spatio-temporal image 

brightness variations (optical flow)

B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 
674–679, 1981.

Two problems, one registration method



Feature tracking

• Challenges

– Figure out which features can be tracked

– Efficiently track across frames

– Some points may change appearance over time 
(e.g., due to rotation, moving into shadows, etc.)

– Drift: small errors can accumulate as appearance 
model is updated

– Points may appear or disappear: need to be able 
to add/delete tracked points



Feature tracking

• Given two subsequent frames, estimate the point 
translation

• Key assumptions of Lucas-Kanade Tracker
• Brightness constancy:  projection of the same point looks the same in 

every frame

• Small motion: points do not move very far

• Spatial coherence: points move like their neighbors

I(x,y,t) I(x,y,t+1)
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• Brightness Constancy Equation:
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Take Taylor expansion of I(x+u, y+v, t+1) at (x,y,t) to linearize the right side:

The brightness constancy constraint

I(x,y,t) I(x,y,t+1)
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Image derivative along x
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Difference over frames



The brightness constancy constraint

• How many equations and unknowns per pixel?

The component of the motion perpendicular to the gradient 
(i.e., parallel to the edge) cannot be measured

If (u, v) satisfies the equation, 
so does (u+u’, v+v’ ) if

•One equation (this is a scalar equation!), two unknowns (u,v)

  0IvuI t
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Can we use this equation to recover image motion (u,v) at each 
pixel?



The aperture problem

Actual motion



The aperture problem

Perceived motion



The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
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Solving the  ambiguity…

• How to get more equations for a pixel?

• Spatial coherence constraint

• Assume the pixel’s neighbors have the same (u,v)
– If we use a 5x5 window, that gives us 25 equations per pixel

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the 
International Joint Conference on Artificial Intelligence, pp. 674–679, 1981.



• Least squares problem:

Solving the  ambiguity…



Matching patches across images
• Overconstrained linear system

The summations are over all pixels in the K x K window

Least squares solution for d given by



Conditions for solvability
Optimal (u, v) satisfies Lucas-Kanade equation

Does this remind you of anything?

When is this solvable?  I.e., what are good points to track?
• ATA should be invertible 

• ATA should not be too small due to noise

– eigenvalues 1 and  2 of ATA should not be too small

• ATA should be well-conditioned

–  1/  2 should not be too large ( 1 = larger eigenvalue)

Criteria for Harris corner detector 



Aperture problem

Corners Lines Flat regions
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Errors in Lukas-Kanade

• What are the potential causes of errors in this procedure?
– Suppose ATA is easily invertible
– Suppose there is not much noise in the image

When our assumptions are violated

• Brightness constancy is not satisfied

• The motion is not small

• A point does not move like its neighbors

– window size is too large

– what is the ideal window size?
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Revisiting the small motion 
assumption

• Is this motion small enough?

– Probably not—it’s much larger than one pixel (2nd order terms dominate)

– How might we solve this problem?



31

Reduce the resolution!



image Iimage J

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)

image 2image 1

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample 

.

.

.
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A Few Details
• Top Level

– Apply L-K to get a flow field representing the flow from 
the first frame to the second frame.

– Apply this flow field to warp the first frame toward the 
second frame.

– Rerun L-K on the new warped image to get a flow field 
from it to the second frame.

– Repeat till convergence.

• Next Level
– Upsample the flow field to the next level as the first 

guess of the flow at that level.
– Apply this flow field to warp the first frame toward the 

second frame.
– Rerun L-K and warping till convergence as above.

• Etc.



image Iimage H

Gaussian pyramid of image 1 Gaussian pyramid of image 2

image 2image 1 u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation
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The Flower Garden Video

What should the
optical flow be?



Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Flow quality evaluation



Flow quality evaluation



• Middlebury flow page
– http://vision.middlebury.edu/flow/

Ground Truth

Flow quality evaluation

http://vision.middlebury.edu/flow/


• Middlebury flow page
– http://vision.middlebury.edu/flow/

Ground TruthLucas-Kanade flow

Flow quality evaluation

http://vision.middlebury.edu/flow/


• Middlebury flow page
– http://vision.middlebury.edu/flow/

Ground TruthBest-in-class alg

Flow quality evaluation

http://vision.middlebury.edu/flow/


Video stabilization



Video denoising



Video super resolution
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Robust Visual Motion Analysis: 
Piecewise-Smooth Optical Flow

Ming Ye

Electrical Engineering 

University of Washington
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Problem Statement:

Assuming only brightness conservation and 
piecewise-smooth motion, find the optical flow 
to best describe the intensity change in three 
frames.

Estimating Piecewise-Smooth Optical Flow
with Global Matching and Graduated Optimization
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Approach: Matching-Based Global 
Optimization

• Step 1.   Robust local gradient-based method for 

high-quality initial flow estimate.

Uses least median of squares instead of regular least squares.

• Step 2.   Global gradient-based method to improve the

flow-field coherence.

Minimizes a global energy function E = Σ (EB(Vi) + ES(Vi)) where 

EB is the brightness difference and ES is the smoothness at flow vector Vi

• Step 3.   Global matching that minimizes energy by a 

greedy approach.

Visits each pixel and updates it to be consistent with neighbors, iteratively.
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TT: Translating Tree

150x150 (Barron 94)

BA    2.60     0.128    0.0724

S3     0.248   0.0167  0.00984

)(e )(pix||e )(pixe BA

S3

e: error in pixels, cdf: culmulative distribution function for all pixels
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DT: Diverging Tree

150x150 (Barron 94)

BA    6.36      0.182      0.114

S3     2.60      0.0813    0.0507

)(e )(pix||e )(pixe BA

S3
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YOS: Yosemite Fly-Through

BA    2.71      0.185      0.118

S3     1.92      0.120      0.0776

)(e )(pix||e )(pixe

BA

S3

316x252 (Barron, cloud excluded)
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TAXI: Hamburg Taxi

256x190, (Barron 94)

max speed 3.0 pix/frame

LMS BA

Error map Smoothness errorOurs
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Traffic

512x512

(Nagel)

max speed:

6.0 pix/frame

BA

Error map Smoothness errorOurs
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FG: Flower Garden

360x240 (Black)

Max speed: 7pix/frame

BA LMS

Error map Smoothness errorOurs



Summary

• Major contributions from Lucas, Tomasi, Kanade
– Tracking feature points
– Optical flow
– Stereo
– Structure from motion

• Key ideas
– By assuming brightness constancy, truncated Taylor 

expansion leads to simple and fast patch matching across 
frames

– Coarse-to-fine registration
– Global approach by former EE student Ming Ye


