Review

ECE P 596
Linda Shapiro

Second Moment Matrix or Harris Matrix

$$
\mathrm{H}=w(x, y) \begin{array}{ll}
I_{x} I_{x} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y} I_{y}
\end{array}
$$

2×2 matrix of image derivatives smoothed by Gaussian weights.

Notation:

$I_{y} \Leftrightarrow \frac{\partial I}{\partial y} \quad I_{x} I_{y} \Leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y}$

The math

To compute the eigenvalues:

1. Compute the Harris matrix over a window.

$$
H=\sum_{(u, v)} w(u, v)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
$$

What does this equation mean in practice?

$$
\begin{array}{ll}
\sum \text { smoothed } I_{x}^{2} & \sum \text { smoothed } I_{x} I_{y} \\
\sum \text { smoothed } I_{x} I_{y} & \sum \text { smoothed } I_{y}^{2}
\end{array}
$$

2. Compute response from that.
$I_{x}=\frac{\partial f}{\partial x}, I_{y}=\frac{\partial f}{\partial y}$

This is how people write it for technical papers

This is how you DO it.

You just smooth with Gaussian as you add up the derivatives.

Corner Response Function

- Computing eigenvalues are expensive
- Harris corner detector used the following alternative

$$
R=\operatorname{det}(M)-\alpha \cdot \operatorname{trace}(M)^{2}
$$

Reminder:

$$
\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c \quad \operatorname{trace}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a+d
$$

Harris detector: Steps (modified to simplify)

1. Compute derivatives $I_{x}{ }^{2}, I_{y}^{2}$ and $I_{x} I_{y}$ at each pixel and smooth them with a Gaussian as you sum them to
2.Compute the Harris matrix H in a window around each pixel
2. Compute corner response function R
4.Threshold R
5.Find local maxima of response function (nonmaximum suppression)
C.Harris and M.Stephens. Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Harris Detector: Results

SIFT descriptor

Full version

- Divide the 16×16 window into a 4×4 grid of cells
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations $=128$ dimensional descriptor

Orientations in each of the 16 pixels of the cell

The orientations all ended up in two bins: 11 in one bin, 5 in the other. (rough count)

SIFT descriptor

Full version

- Start with a 16×16 window (256 pixels)
- Divide the 16×16 window into a 4×4 grid of cells (16 cells)
- Compute an orientation histogram for each cell

- 16 cells * 8 orientations = 128 dimensional descriptor
- Threshold normalize the descriptor:

$$
\sum_{i} d_{i}^{2}=1 \text { such that: } d_{i}<0.2
$$

Adapted from slide by David Lowe

Matching with Features

-Detect feature points in both images
-Find corresponding pairs
-Use these matching pairs to align images - the required mapping is called a homography.

