Object Recognition with Deformable Models

Pedro F. Felzenszwalb
Department of Computer Science
University of Chicago

Joint work with: Dan Huttenlocher, Joshua Schwartz,
David McAllester, Deva Ramanan.
Example Problems

Detecting rigid objects

Detecting non-rigid objects

PASCAL challenge

Medical image analysis

Segmenting cells
Deformable Models

• Significant challenge:
 - Handling variation in appearance within object classes
 - Non-rigid objects, generic categories, etc.

• Deformable models approach:
 - Consider each object as a deformed version of a template
 - Compact representation
 - Leads to interesting modeling and algorithmic problems
Overview

• **Part I: Pictorial Structures**
 - Deformable part models
 - Highly efficient matching algorithms

• **Part II: Deformable Shapes**
 - Triangulated polygons
 - Hierarchical models

• **Part III: The PASCAL Challenge**
 - Recognizing 20 object categories in realistic scenes
 - Discriminatively trained, multiscale, deformable part models
Part I: Pictorial Structures

- Introduced by Fischler and Elschlager in 1973
- Part-based models:
 - Each part represents local visual properties
 - “Springs” capture spatial relationships

Matching model to image involves joint optimization of part locations “stretch and fit”
Local Evidence + Global Decision

- Parts have a match quality at each image location
- Local evidence is noisy
 - Parts are detected in the context of the whole model
Matching Problem

- Model is represented by a graph $G = (V, E)$
 - $V = \{v_1, \ldots, v_n\}$ are the parts
 - $(v_i, v_j) \in E$ indicates a connection between parts
- $m_i(l_i)$ is a cost for placing part i at location l_i
- $d_{ij}(l_i, l_j)$ is a deformation cost
- Optimal configuration for the object is $L = (l_1, \ldots, l_n)$ minimizing

$$E(L) = \sum_{i=1}^{n} m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j)$$
Matching Problem

\[E(L) = \sum_{i=1}^{n} m_i(l_i) + \sum_{(v_i,v_j) \in E} d_{ij}(l_i,l_j) \]

- Assume \(n \) parts, \(k \) possible locations for each part
 - There are \(k^n \) configurations \(L \)
- If graph is a tree we can use dynamic programming
 - \(O(nk^2) \) algorithm
- If \(d_{ij}(l_i,l_j) = g(l_i-l_j) \) we can use min-convolutions
 - \(O(nk) \) algorithm
 - As fast as matching each part separately!
Human Pose Estimation
Human Tracking

Ramanan, Forsyth, Zisserman, *Tracking People by Learning their Appearance*
Part III: PASCAL Challenge

- ~10,000 images, with ~25,000 target objects
 - Objects from 20 categories (person, car, bicycle, cow, table...)
 - Objects are annotated with labeled bounding boxes
Model Overview

Model has a root filter plus deformable parts
Histogram of Gradient (HOG) Features

- Image is partitioned into 8x8 pixel blocks
- In each block we compute a histogram of gradient orientations
 - Invariant to changes in lighting, small deformations, etc.
- We compute features at different resolutions (pyramid)
Filters

- Filters are rectangular templates defining weights for features
- Score is dot product of filter and subwindow of HOG pyramid

![Diagram showing the process from an image pyramid to a HOG pyramid with a filter applied](image)

Score of H at this location is $H \cdot W$
Object Hypothesis

Multiscale model captures features at two-resolutions

Score is sum of filter scores plus deformation scores
Training

- Training data consists of images with labeled bounding boxes
- Need to learn the model structure, filters and deformation costs
Learned Models

Bottle

Car

Sofa

Bicycle
Example Results
More Results
Overall Results

• 9 systems competed in the 2007 challenge
• Out of 20 classes we get:
 - First place in 10 classes
 - Second place in 6 classes
• Some statistics:
 - It takes ~2 seconds to evaluate a model in one image
 - It takes ~3 hours to train a model
 - MUCH faster than most systems
Summary

• Deformable models provide an elegant framework for object detection and recognition
 - Efficient algorithms for matching models to images
 - Applications: pose estimation, medical image analysis, object recognition, etc.

• We can learn models from partially labeled data
 - Generalized standard ideas from machine learning
 - Leads to state-of-the-art results in PASCAL challenge

• Future work: hierarchical models, grammars, 3D objects