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Abstract

This paper presents a new method for estimating piecewise-smooth optical flow. We propose a global

optimization formulation with three-frame matching and local variation and develop an efficient technique

to minimize the resultant global energy. This technique takes advantage of local gradient, global gradient

and global matching methods and alleviates their limitations. Experiments on various synthetic and real

data show that this method achieves highly competitive accuracy.

I. Introduction

Optical flow is a 2D image motion measure that has a wide range of applications in

computer vision [14], video coding [16] and computer graphics [35]. Its accurate and

efficient estimation is a long-standing difficult problem.

The fundamental assumption enabling optical flow estimation is brightness conservation:

I(x, y, t) = I(x+ u∆t, y + v∆t, t+∆t), (1)

where I(x, y, t) is the image intensity at point (x, y) and time t, and (u, v) is the optical flow

vector. Depending on what variation of Eq.(1) is used, optical flow estimation methods can

be classified into two main categories: matching-based and gradient-based1. Matching-

based methods make direct use of Eq.(1). They can handle large motion and avoid tricky

derivative calculations, but they often meet with computational difficulties and yield poor

sub-pixel accuracy [2]. Gradient based methods use the linear approximation of Eq. (1)

Ixu+ Iyv + It = 0, (2)

a.k.a the Optical Flow Constraint Equation (OFCE) [2], where (Ix, Iy, It) is the spatiotem-

poral image intensity gradient. These methods have become the most popular because of

the relatively low computational complexity and good accuracy, but they can break down

in the presence of large motion and inaccurate derivative estimates [38].

Additional constraints on the flow are obtained from various flow field models [2], [4].

Among them we are particularly interested in piecewise smooth models [5], because they

are applicable to general scenes and are indispensable building blocks, leading to more

complex motion analysis in a bottom-up fashion[30]. Piecewise smooth models include

1Frequency/phase-based methods are often close to frequency-domain equivalents of the above two methods [2].
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two types: local parametric and global optimization. Local parametric methods assume

that within a certain region the flow field is described by a parametric model [4], with the

simplest and most popular model being piecewise constant. Their accuracy and efficiency

are among the best according to various comparative studies [2], [13], but they degrade

or fail when local information becomes insufficient or unreliable. Global optimization

methods try to strike a balance between overall brightness error and smoothness error

by minimizing a global energy, which might be developed from regularization [5], [21] or

Bayesian (MAP, MRF) [19], [6], [29] perspectives. They are less sensitive to poor local

constraints, but existing techniques of this type, even those using robust estimators [5],

tend to oversmooth the flow field.

Traditional techniques [2] usually require brightness conservation and flow smoothness

to be satisfied in a strict (least-squares, LS) sense. They yield limited accuracy in practice

where model violations due to motion discontinuities and abrupt intensity changes are

abundant. As the limitations are widely recognized, a large number of recent efforts have

been devoted to increasing robustness especially in the presence of motion discontinuities.

Among these attempts, replacing LS estimators with robust estimators has achieved the

most success [27], [28], [5], [21], [1], [26], [38]. Reformulating global optimization criteria in

terms of MRF with line processes [22], [19], [15], [6], weak continuity [8], [5] or anisotropic

diffusion [2], [7] is another widely pursued direction. Despite these advances, handling

occlusion remains a tough problem for the field.

Unsatisfactory state-of-the-art performance is largely due to formulation defects and

solution complexity. On one hand, approximate formulations are frequently adopted for

ease of computation, with the consequence that the correct flow is unrecoverable even in

ideal settings. As an example, many methods intended to preserve motion discontinuities

use gradient-based brightness constraints, which break down at discontinuities due to

derivative evaluation failure [38]. On the other hand, more sophisticated formulations

typically involve large-scale nonconvex optimization problems, which are so hard to solve

that the achievable accuracy might not be competitive with simpler methods. Motion

estimation research has arrived at a stage at which a good collection of ingredients are

available; but in order to significantly improve performance, both problem formulation
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and solution methods need to be carefully considered.

In this paper we discuss a matching-based global optimization method with a practi-

cal solution technique. The formulation uses three-frame matching to reduce visibility

problems at occlusions, and balances the strengths of brightness and smoothness errors

according to local data variation. We develop a hierarchical three-step optimization strat-

egy to solve the resulting energy minimization problem. Step I uses a high-breakdown

robust local gradient-based method with a deterministic iterative implementation, which

provides a high-quality initial flow estimate. Step II uses a global gradient-based method

which efficiently improves the flow field coherence. Step III minimizes the original energy

by greedy propagation. It corrects gross errors introduced by derivative evaluation and

pyramid operations. In this process, merits tend to be inherited from all three techniques.

As a result, high accuracy is achieved both on and off motion boundaries.

II. Formulation

We assume the optical flow field V minimizes the global energy

E =
∑

all pixels i

EB(Vi) + ES(Vi) (3)

where Vi is the flow vector at pixel i; EB and ES represent brightness conservation and

flow smoothness respectively.

The traditional assumption that pixels are visible in all frames is a major source of

gross errors in occlusion areas. Treating such violations as outliers [6] may prevent error

from propagating to nearby regions, but does not provide constraints for occlusion pixels

and thus does not help their motion estimation. Introducing additional fields to represent

occlusion [10], [20] vastly increases the problem complexity. We observe that normally all

points in a frame are visible in the previous or the next frame. Assuming constant motion

within three frames, we define the matching error as the minimum of the backward and

forward warping errors, i.e.,

eW (Vi) = min(|Ib(Vi)− Ii|, |If (Vi)− Ii|) (4)

where Ii is the intensity of pixel i in the middle frame; Ib(Vi), If (Vi) are warped intensities

in the previous and the next frames respectively. This error design is simple yet very
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effective. Similar ideas have shown good results in recent independent studies [31], [39],

[18]. We further use a robust error function ρ(x, σ) to resist other sources of outliers,

yielding the brightness energy

EB(Vi) = ρ(eW (Vi), σBi) (5)

where σBi is the local brightness variation scale. We define the smoothness error to be

ES(Vi) =
1

8

∑

j∈N8

i

ρ(|Vi − Vj|, σSi) (6)

where σSi is the local flow variation scale. It requires a vector Vi to be consistent with

its 8-connected neighbors {Vj, j ∈ N 8
i } and the robust error function prevents smoothing

across motion boundaries. We choose to use the Geman-McClure robust error function

ρ(x, σ) = x2/(x2 + σ2) [5] in both the EB and ES terms for its redescending [5], [24] and

normalizing properties. The first property ensures that the outlier influence tends to zero.

We take errors exceeding

τ = σ/
√
3, (7)

where the influence function begins to decrease, as outliers [5]. The normalization property

is desirable because the brightness and smoothness energies become comparable and their

relative strengths can be adjusted locally by the scales σBi, σSi—where the observation

is not trustworthy (σBi is large), stronger smoothness is enforced, and vice versa. We

gradually learn the scales during the optimization process (Section III). Previous global

formulations [2], [5], [21], usually have a control parameter λ between EB and ES, and

σB, σS, λ are all globally tuned parameters. Compared to such approaches, this locally

adaptive scheme is more reasonable and reduces parameter tuning in experiments.

III. Optimization

Minimizing a global energy like Eq. (3) is very hard. Stochastic methods such as sim-

ulated annealing converge too slowly to be practical [6]. Deterministic methods [6], [21]

have achieved more success, but they have limited capability for avoiding local minima and

their performance depends on the initialization quality. Our approach to this problem is

hierarchical graduated optimization. We create a P -level image pyramid I p, p = 0, . . . , P−1
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and begin estimation from the top (coarsest) level P − 1 with a zero initial flow field [4].

At every level the algorithm proceeds in three steps, each computing a finer approximation

to the original energy.

A. Step I: Gradient-Based Local Regression

Suppose a crude flow estimate V0 is available and has been compensated for. Step I uses

a robust gradient-based local regression method to compute the incremental flow ∆V0.

For each pixel, we find the dominant translational motion in its W ×W neighborhood by

solving the n = W ∗W set of OFCEs (Eq. (2)) under a least-median-of-squares (LMS)

criterion [24]. The LMS solution is usually approximated by the estimate yielding the

smallest criterion value in a set of trial estimates. In the recipe given by Rousseeuw and

Levoy (RL) [24], a trial estimate is calculated from each pair of constraints and m estimates

are generated by randomly drawing from the total C2
n possibilities. They also suggest a

reweighted least squares (RLS) procedure to improve the statistical efficiency of the LMS

estimate. For each trial estimate, they calculate the variance of healthy residual errors as

s = 1.4826∗mediann
i=1r

2
i , identify constraints agreeing with the trial estimate as those with

residuals satisfying |ri| ≤ 2.5s, and update the estimate using LS on the inliers. Previous

uses of LMS in motion estimation [1], [26], [38] uniformly apply the above algorithm to

all pixels. This incurs unnecessary computation at the majority of the places where no

outliers exist and least-squares suffices; meanwhile the accuracy is compromised at places

of heavy contamination where a small trial set might not contain a good estimate.

By taking advantage of the piecewise smoothness property of optical flow and the rea-

sonable accuracy of the LS estimate at the majority of pixels, we propose a deterministic

adaptive algorithm to generate the trial set [39]. The idea is to start with the LS flow field

and generate the trial solution set from neighboring values instead of by random drawing.

In our experiments, we form a trial set V{j} for each Vi using values at the corners and

side midpoints of the W ×W box centered at site i, keep estimates yielding lower criterion

values, and iterate until no update occurs.

This algorithm in effect provides an estimator whose complexity depends on the actual

outlier contamination. It can be faster and yield more stable accuracy than algorithms

based on random sampling. We show its advantages by comparing its results with the RL
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algorithm using m = 30 random samples; in this case the probability of having at least one

good initial estimate is as high as 99.98% even with 50% outliers present [1]. On the TS

sequence (Section IV), which only contains flow outliers at the motion boundary so that

the RL algorithm can almost recover the LMS solutions, our method produces virtually

the same accuracy with less computation. Fig. 2(e) shows the number of trials at each

pixel as an intensity image. More trials, indicated by brighter colors, are carried out closer

to the boundary where the motion is more complex. The number ranges from 1 to 13,

as opposed to the fixed 30 in the RL case. Comparisons were also conducted on all the

other sequences described in Section IV and our method always produced higher accuracy

in less time. As a side note, it would be interesting to see how the trial set size could be

used as an early cue for scene complexity.

B. Step II: Gradient-Based Global Optimization

Recall that V0 is the initial flow estimate that has been compensated for and ∆V0 is

the incremental flow resulting from Step I. Step II improves the coherence of ∆V0 by

using a gradient-based global optimization method. The energy to minimize is a closer

approximation to Eq. (3):

E(∆V ) =
∑

i

[ρ(eG(∆Vi), σBi) +
1

8

∑

j∈N8

i

ρ(Vi +∆Vi − Vj −∆Vj, σSi)] (8)

where eG is the OFCE residual (Eq. (2)) and Vi is the ith vector of the initial flow V0. The

local scales σBi, σSi are important parameters which control the shape of E and hence the

solution. Below we describe how to estimate σ’s from Step I’s results.

Assume that normal errors are zero-mean Gaussian variables with standard deviation

σ̃, and outliers have errors exceeding 2.5σ̃. Contrasting this to Eq. (7) we can express σ

in terms of σ̃ as σ = 2.5
√
3 σ̃. At each site i, we calculate σ̃Si

as the sample standard

deviation of “inliers” of smoothness errors {Vj − Vi, j ∈ N 8
i }, with inliers selected by

the RLS procedure in Section III-A. σ̃Si
is further bounded above by a globally constant

value 1.4826 ∗ mediani σ̃Si
to prevent erroneously large values and bounded below by

0.001 for stability. We use the OFCE residual as σ̃Bi
and limit its value to the range

[0.01, 1.4826 ∗ mediani σ̃Bi
]. The scale computation in Step III is similar except that σ̃Si

is limited to [0.004,0.02] and we adopt a globally constant σ̃B, estimated from matching
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errors eW i (Eq. (4)) by max(0.08, 1.4826 ∗ mediani eW i). Although ad-hoc, the above

method has shown effectiveness in capturing local scale variation.

With the scales specified, we minimize the energy using Successive OverRelaxation

(SOR) [8], [6]. Starting with the initial estimate ∆V0, on the kth iteration, each u com-

ponent (and v similarly) is updated as uk
i = uk−1

i − ω/T (ui)∂E/∂uk−1
i , where T (ui) =

I2
x/σB

2
i + 8/σS

2
i . SOR is good at removing high-frequency errors while very slow at re-

moving low-frequency errors [36], [9]. In our case, the initial estimate has dominant

high-frequency errors—it has good accuracy at most places but may lack coherence due to

the use of local constraints—and hence the SOR procedure is very effective and converges

fast. In addition, the update step size is adjusted by spatially varying local scales (through

T (ui)), which further improves the efficiency in exploring the solution space.

C. Step III: Global Matching

V1, sum of the initial estimate V0 and the incremental flow ∆V1 from Step II, still

exhibits gross errors at motion boundaries and other places with poor gradient estimates.

We reduce its errors by solving the original matching-based formulation Eq. (3) through

greedy propagation. We first calculate the energy EB(Vi) + ES(Vi) from V1 for all pixels.

Then we iteratively visit each pixel, examining whether a trial estimate from a candidate

set results in a lower global energy E. The candidate set consists of the 8-connected

neighbors and their average, which were updated in the last visit. Once a pixel energy

decrease occurs, we accept the candidate and update the locally affected energy terms. The

simple scheme works reasonably well because bad estimates are confined to narrow areas

in the initial flow V1. It converged quickly in our experiments. It is worth mentioning that

a similar greedy propagation scheme was successfully applied to solving a global matching

stereo formulation in an independent study [33].

D. Overall Algorithm

Operations on each pyramid level are illustrated in Fig. 1. When more than one pyra-

mid level is used, we choose to skip Step III on the coarsest level. The consideration is

that gradient-based methods suffice on the coarsest level since the data are substantially

smoothed and the flow is small; applying the matching constraint can be harmful due to

DRAFT May 7, 2003



9

the smoothing and possible aliasing.
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Fig. 1. System diagram (operations at each pyramid level)

From a practical point of view, the graduated scheme benefits from all three popular

optical flow approaches. Step I (gradient-based local regression) generates high-quality ini-

tialization while leaving local ambiguities to be resolved later in more global formulations.

Step II (gradient-based global optimization) improves the flow coherence; it converges fast

because of the good initialization. Simple hierarchical schemes have the limitations that

the projection and warping operations oversmooth the flow field, and errors in coarser

levels are magnified and propagated to finer levels and are generally irreversible [3], [6].

These problems are much alleviated by Step III(matching-based global optimization)—

it works on the original pyramid images and corrects gross errors caused by derivative

computation, projection and warping.

IV. Experiments

We estimate optical flow in the middle of every three frames. The number of pyramid

levels is empirically determined and no other parameters are tuned. We also compare

results with those produced by BA (Black and Anandan [6])—a good representative of

previous dense regularization techniques. BA’s code is publicly available. It calculates

flow on the second of two frames. It uses the same number of pyramid levels as ours

and other parameters are set as suggested in [6]. The computation time of our algorithm

depends on the motion complexity in the input data. It is typically close to that of BA.
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Some sample CPU time values (in seconds on a PIII 900MHz PC running Linux) for our

algorithm and BA are: 11.7 and 14.7 (Taxi), 29.5 and 27.4 (Flower Garden), 36.8 and 24.2

(Yosemite). Note that neither algorithm has been optimized for speed.

A. Synthetic Data

Fig. 2. TS sequence results (left to right: (a) to (f)). (a) middle frame with motion boundary highlighted.

(b,c,d,f) show flows in the window outlined by the dotted line. (b) our estimate looks the same as the

groundtruth. (c) BA estimate. (d) Initial LS estimate in Step I. (e) LMS trial set size in Step I (see

Section III-A). (f) Step I final result. Step II result looks identical and is hence not shown separately.

Five data sets with flow groundtruth are used for quantitative evaluation. We use e,

the absolute u or v error, as the error measure. The motivations are (i) the u and v

components, and positive and negative errors are treated symmetrically in optical flow

estimation, and (ii) a 1-D measure is much easier to work with than a 2-D or higher-

dimensional measure. We give the empirical cumulative distribution function (cdf) of e in

addition to its mean ē (pixels). Better estimates should have cdf’s closer to the ideal unit

step function. To facilitate comparison with other techniques, we also report the popular

average angular error e 6 (◦) [2][12]. It is important to point out that this error measure

ought to be used with caution. One problem with it is that estimates having the same

error magnitude may result in vastly different angular error values [1]. More fundamental

problems with quantitative evaluation will be discussed at the end of this section.

The TS sequence (Fig. 2) gives an illustrative example. It is well textured and contains

two occluding squares translating at exactly 1 pixel/frame. Therefore any formulation

assuming brightness conservation and piecewise smoothness should fully recover the flow.

Our method does achieve that (see Fig. 2(b) and curve “S3” in Fig. 3(a)). Now let us

look at results from two gradient-based methods, BA and our Step I, which is a robust

local gradient-based technique by itself [1], [26]. They both produce gross errors at motion

boundaries due to gradient evaluation failure. In addition, Step I shows rounded corners
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because the background motion becomes dominant there, while BA’s poor accuracy can

be attributed to oversmoothing and slow convergence of its SOR procedure.

The Translating Tree (TT), Diverging Tree (DT) and Yosemite (YOS) sequences were

obtained from Barron [2]. TT and DT [12] simulate translational camera motion with

respect to a textured planar surface. TT’s motion is horizontal and DT’s is divergent.

YOS’s motion is mostly divergent. The cloud part is excluded from evaluation [6], [1].

We use 2 levels of pyramid for TT and DT, and 3 levels for YOS. Error measures are

given in the captions of Fig. 3. Many optical flow papers published after [2] report the

e 6 error on these data sets. Our TT result seems to be the best. The smallest DT error

was given by Fleet and Jepson [12]: 0.99◦ at 61.0% density. Our error appears to be large

because (i) much of our error comes from erroneous estimates at image borders, which

are excluded from evaluation in [2] (in fact, if we exclude a 10-pixel wide margin, the

errors drop to ē = 0.03 and e 6 = 1.64 respectively) and (ii) our flow field is 100% dense

while many other results in [2], [25], [26] are for selected fields. Some results on YOS are

quoted in Table I. The first group assumes piecewise constant flow. The second groups

assume stronger flow models such as local affine flow and constant flow in a considerable

number of frames. These assumptions are appropriate for YOS and may lead to higher

accuracy. The smallest error on YOS was reported from a simultaneous motion estimation

and segmentation algorithm assuming an affine motion model in 9 frames [11]. Although

using only a piecewise constant flow model and 3 frames, our method compares favorably

with these techniques.
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Fig. 3. Error e cdf curves for TS (a), TT (b) , DT (c), YOS (d) and DTTT (e). (ē, e 6 ) values: TS:

Ours (2.2e-4, 1.1e-2), BA (0.12, 8.04); TT: Ours (9.8e-3, 0.05), BA (0.07, 2.60); DT: Ours (0.05, 2.60),

BA (0.11, 6.36); YOS: Ours (0.08, 1.92), BA (0.12, 2.712); DTTT: Ours (0.08, 4.03), BA (0.20, 10.9).

2The value is slightly different from the one reported by Black and Anandan [5] most probably because their

data are different from Barron’s and they calculated flow on the 14th frame instead of the 9th.
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Technique e 6 (◦)

Ye, Haralick and Shapiro (proposed) 1.92

Sim and Park [29] 4.13

Black and Anandan [5] 2.71

Szeliski and Coughlan [32] 2.45

Mémin and Pérez [21] 2.34

Black and Jepson [11] 2.29

Ju, Black and Jepson [17] 2.16

Bab-Hadiashar and Suter [1] 1.97

Farnebäck [11] 1.14

TABLE I

Comparison of various techniques on YOS (cloud part excluded) with Barron’s angular error

Fig. 4. DTTT sequence results (left to right): middle frame (motion boundaries highlighted), our

horizontal, vertical flow and motion boundaries; BA horizontal, vertical flow and motion boundaries.

We examine the motion boundary performance of our method on the DTTT sequence

(Fig. 4). It was generated from TT, DT and “cookie cutters”: image data inside the

cookie cutters come from TT and those outside come from DT. We display the horizontal

and vertical flow components as intensity images to show more details. Brighter pixels

represent larger positive speeds. Two pyramid levels are used. Our result is smooth with

crisp motion boundaries, and is better than BA both visually and quantitatively (see Fig. 4

and Fig. 3(e)). As a by-product of our method, motion boundaries are easily located in

the smoothness error map.

Nonetheless, we do notice some gross errors near the boundaries, e.g., the right corner

of the triangle is smoothed into the background. A closer look reveals that most of such

errors happen in textureless regions, where even human viewers are unable to resolve the

ambiguity. In such situations, the correctness of the “groundtruth” is questionable and so

is the authority of quantitative evaluation based on it. Also noticeable is that our motion

boundaries are not as smooth as one would like. This reflects the weakness of the simple

optimization method in Step III and the need for more advanced techniques.
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B. Real Data

Results on four real image sequences: Taxi , Flower Garden, Traffic and Pepsi Can, are

given in Fig. 5. Taxi [2] mainly contains three moving cars with the maximum speed about

3.0 pixels/frame. Motion in Flower Garden (from Black) is caused by camera translation

and scene depth. The image speed of the front tree is as large as about 7 pixels/frame.

Traffic (from Nagel) contains eleven moving vehicles with the maximum image speed at

about 6 pixels/frame. Pepsi Can [5] has motion discontinuities due to camera translation

and scene depths. The maximum image speed is about 2 pixels/frame. Two, three,

three and two pyramid levels are used for the above four data sets respectively. Our

technique shows consistent performance, yielding clear-cut motion boundaries and smooth

flow within each layer.

V. Conclusion

We have presented a matching-based global optimization approach to optical flow es-

timation with a practical solution technique. Contributions of our work include: (1) A

simple and effective backward-forward matching scheme ameliorates the visibility prob-

lem at occlusions. (2) A global energy function balances the strength of brightness and

smoothness errors according to local data variability. (3) Motion discontinuities can be

reliably located at flow smoothness outliers. (4) A three-step graduated optimization strat-

egy is developed to minimize the resultant energy. It takes advantage of gradient-based

local regression, gradient-based global optimization and matching-based global optimiza-

tion methods and reduces their limitations. (5) A deterministic algorithm is proposed to

approximate the LMS robust estimator in the local gradient step. Experiments showed

that it can be faster and more accurate than algorithms based on random sampling.

As an accurate and efficient low-level approach, the proposed method can facilitate

higher-level motion analysis. Our flow estimates often have a layered look with motion

boundaries located. They can aid motion segmentation, contour-based and layered repre-

sentation [21], [35]. Model selection [34] is a crucial problem in automatic scene analysis,

which is difficult because comparing a collection of models to the raw image data involves

formidable computation. Our method can supply a higher ground for scene knowledge
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Fig. 5. Real data results. 1st column: middle frames. 2nd column: BA horizontal flow. 3rd column: our

horizontal flow. 4th column: Our smoothness error (ES) map. 1st row: Taxi. 2nd row: Flower garden.

3rd row: Traffic. 4th row: Pepsi can.

learning. The backward-forward matching error, together with detected motion bound-

aries, can be used for occlusion reasoning and motion discontinuity-preserving image warp-

ing. Furthermore, some of our techniques can be useful to other low-level visual problems

such as stereo matching, 3D surface reconstruction and image restoration.

To improve the formulation, the proper modeling of the three-frame matching error,

the choice of robust estimator, and the learning of parameters should be investigated. To

develop more global solutions to the optimization problem, methods such as graph cuts [9],

full multigrid methods [23], Bayesian belief propagation (BBP) [36], and local minimization
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methods alternative to SOR [23] are worth studying. Among all criteria that the global

energy may arise from, the Bayesian approach is the most appealing in both theoretical

and practical respects. The benefits of the Bayesian framework should be exploited and

that may provide a graceful solution to two important problems: global optimization and

uncertainty analysis [2], [37]. Finally, as we have pointed out in Section IV-A, existing

evaluation methods are flawed and developing more convincing methods deserves great

attention.
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