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Abstract
Deep learning techniques offer improvements in computer-aided diagnosis systems. However, acquiring image domain annota-
tions is challenging due to the knowledge and commitment required of expert pathologists. Pathologists often identify regions 
in whole slide images with diagnostic relevance rather than examining the entire slide, with a positive correlation between the 
time spent on these critical image regions and diagnostic accuracy. In this paper, a heatmap is generated to represent patholo-
gists’ viewing patterns during diagnosis and used to guide a deep learning architecture during training. The proposed system 
outperforms traditional approaches based on color and texture image characteristics, integrating pathologists’ domain expertise 
to enhance region of interest detection without needing individual case annotations. Evaluating our best model, a U-Net model 
with a pre-trained ResNet-18 encoder, on a skin biopsy whole slide image dataset for melanoma diagnosis, shows its potential in 
detecting regions of interest, surpassing conventional methods with an increase of 20%, 11%, 22%, and 12% in precision, recall, 
F1-score, and Intersection over Union, respectively. In a clinical evaluation, three dermatopathologists agreed on the model’s 
effectiveness in replicating pathologists’ diagnostic viewing behavior and accurately identifying critical regions. Finally, our study 
demonstrates that incorporating heatmaps as supplementary signals can enhance the performance of computer-aided diagnosis 
systems. Without the availability of eye tracking data, identifying precise focus areas is challenging, but our approach shows 
promise in assisting pathologists in improving diagnostic accuracy and efficiency, streamlining annotation processes, and aiding 
the training of new pathologists.

Keywords Digital pathology · Medical image analysis · Deep learning · Region of interest · Saliency detection · Image 
reconstruction
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Introduction

Cutaneous melanoma, the most lethal form of skin cancer, 
most commonly originates from melanocytes at the der-
mal–epidermal junction. The global prevalence of melanoma 
is on the rise, establishing it as one of the most commonly 
diagnosed cancers in adults [1, 2]. Early detection and effec-
tive management are paramount due to its high mortality rate 
upon metastasis [3]. The diagnosis of melanoma requires 
a skin biopsy followed by a meticulous examination by a 
pathologist. However, histopathological analysis of biopsy 
specimens can be subjective and susceptible to diagnostic 
errors [4]. In the medical field, diagnostic errors contribute 
to 10% of patient deaths and constitute a leading source of 
medical malpractice claims [5]. The complex nature of mela-
noma diagnosis arises from its diverse presentations in terms 
of size, morphology, and growth patterns [3]. Pathologists 
are tasked with identifying specific image regions displaying 
pathological characteristics, relying on their clinical expertise 
to interpret these visual cues and either confirm or exclude a 
particular diagnosis [6].

Over the past decades, advances in technology cou-
pled with the growing adoption of machine learning 
techniques have profoundly reshaped medical care, 
especially with its integration into healthcare systems 
[7–14]. With the advent of whole slide imaging, the 
entire glass slides can be digitized into high-resolution 
images, allowing pathologists to conveniently view and 
analyze tissue samples on a computer [15, 16]. Devices 
such as eye tracking and viewport tracking, where a 
viewport is the visible rectangular area of the image 
on a pathologist’s computer screen, allow us to record 
how pathologists interact with the information on digi-
tal whole slide images. Incorporating tracking devices 
into this process allows researchers to better understand 
pathologists’ interpretive behavior and interaction with 
digital slides [17–19]. This has transformed the histopa-
thology field by gaining an understanding of the diag-
nostic decision-making process.

Detecting regions of interest (ROIs) on a whole slide 
image (WSI) involves a visual assessment of an image to 
locate regions with the most relevant and representative 
pathology. An eye tracking study highlights the crucial 
role of fixating on a consensus-defined ROI, as failure to 
do so can lead to the pathologist overlooking these critical 
areas [20]. Previous studies show a connection between 
pathologists’ viewing behaviors and diagnostic accuracy 
[21, 22]. This study hypothesizes that computer-aided 
diagnosis (CAD) systems might benefit from incorporat-
ing viewing behavior data. Hence, automatic ROI recogni-
tion is a reasonable first step to developing an automated 
diagnosis system. Marzahl et  al. show that automatic 

annotations on microscopy slides increased consensus 
among experts and increased accuracy in deep learning 
classifiers more than manual annotations, ensuring more 
consistent and repeatable results which is highly desirable 
in the medical field [23].

Previous ROI detection systems have been devel-
oped in different frameworks including object detec-
tion [24–29], tissue segmentation [30–34], classifica-
tion [35], CNN-based feature extraction [36–38], and 
content-based histopathology image retrieval [39–41]. 
These methods mostly rely on pathologists’ manual ROI 
annotations, which are costly, time-intensive, and require 
domain expertise. However, pathologists’ viewing behav-
ior data collected during their routine diagnosis sessions 
on digital viewers offers a rich and efficient source of 
information for ROI detection [42]. While Mercan et al. 
employed pathologists’ viewport tracking for breast 
biopsy images [35] and Zou et al. used ophthalmolo-
gists’ eye tracking for retinal images to localize diabetic 
macular edema ROIs [43], these models are restricted by 
their reliance on basic image attributes like color and tex-
ture. These models face challenges in generalization and 
performance across varied conditions such as different 
scanners, color distributions, and image types. Moreover, 
research in computer vision has demonstrated that deep 
learning algorithms can outperform algorithms that use 
hand-crafted features [44, 45].

This paper proposes an innovative method combining 
information on pathologists’ viewing behavior and deep 
image features to generate heatmaps indicating diagnosti-
cally relevant areas on WSI. A heatmap is a visual rep-
resentation of data where varying colors highlight the 
significance or frequency of pathologists’ attention on 
specific regions. These heatmaps guide our model, ena-
bling the reconstruction of heatmaps for input images. 
Our approach integrates pathologists’ domain knowledge 
with deep image features, enabling robust ROI detection. 
The model’s effectiveness is demonstrated by evaluating 
its performance on WSIs of skin biopsies of melanocytic 
lesions. The proposed model excels by utilizing patholo-
gists’ viewing behaviors, offering the potential to assist 
pathologists in clinical training programs, clinical prac-
tices, and the development of CAD systems. The key con-
tributions of our study include:

• A novel system that emphasizes viewing behaviors for 
ROI detection,

• Broad applicability to varied pathology types,
• High recall in ROI identification,
• performance improvement of computer-aided diagnosis 

models by incorporating ROI detection result as supple-
mentary signals.
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Materials and Methods

This section provides an overview of our dataset, including 
its characteristics and statistics. We outline the steps taken 
to process the viewport data, extract ROIs from patholo-
gists’ viewing behavior, and generate heatmaps. Addi-
tionally, we explain how these heatmaps are integrated 
into our ROI detection pipeline. Moreover, we discuss the 
evaluation methodology employed to assess our model’s 
performance in predicting heatmaps of clinically impor-
tant regions.

Dataset and Pre‑processing

In this section, we provide an in-depth overview of our 
dataset and the related pre-processing methods. We start by 
introducing the skin biopsy WSIs dataset. Further details 
will be provided on the pathologists’ viewport data and its 
collection methodology. Next, we will define our measure 
of diagnostic accuracy, which is based on a consensus refer-
ence diagnosis. Concluding this section, we describe how we 
selected and split our data for the study.

Skin Biopsy WSIs

The skin biopsy WSIs in this study are from the prior M-Path 
study [4, 46] in which skin biopsy specimens of melanocytic 
lesions (N = 240) were randomly selected from available stored 
specimens at Dermatopathology Northwest in Bellevue, Wash-
ington. Data used in the current study was collected and de-
identified prior to this study; thus, the current study does not 
involve any sensitive patient health information. The hematoxy-
lin and eosin (H&E) stained slides were selected with stratifi-
cation based on the patient’s age and the original diagnosis. 
Each glass slide was scanned at 40 × magnification using a 
Hamamatsu NanoZoomer 2.0-RS digital slide scanner to gen-
erate digital WSIs. These cases were classified into 5 diagnos-
tic classes using the original MPATH-Dx scheme [47]. The 
number of biopsy cases in each class and example diagnostic 

terms for each class are as follows: 25 cases in class 1 (nevus/
mild atypia), 36 cases in class 2 (moderate atypia/dysplasia), 60 
cases in class 3 (severe dysplasia/melanoma in situ), 58 cases in 
class 4 (stage pT1a invasive melanoma), and 61 cases in class 
5 (stage pT1b or higher invasive melanoma). The details of the 
dataset collection and classification can be found elsewhere [4, 
46]. To be consistent with the latest revision of the MPATH-
Dx classification scheme [48], we combined classes 1 and 2 in 
the original dataset. This leaves us with a more balanced data 
distribution among four different classes. Table 1 summarizes 
our dataset distribution among the four MPATH-Dx classes. 
Due to stringent privacy considerations, ethical constraints, 
and institutional policies, our dataset is not publicly available 
for general release. However, interested individuals can contact 
authors for more information.

Pathologists’ Viewport Data

Pathologists’ viewport data from the prior M-Path study 
[49] was collected using an online digital slide viewer that 
was developed using HD View SL, Microsoft’s open-source 
Silverlight gigapixel picture viewer. The viewer allowed 
pathologists to pan around the image and zoom in and out up 
to × 60 magnification. The web-based viewer automatically 
logged the viewport tracking data as pathologists viewed 
each slide. A viewport is a rectangular area of the image that 
is visible on the pathologist’s computer screen at any time 
during their interpretation. For each interpretation (pair of 
pathologist and case), a list of viewport coordinates, magni-
fication (zoom) level, and time stamps were recorded.

This de-identified dataset includes viewport tracking data 
from two groups of pathologists: community pathologists and 
M-Path consensus reference panel. Community pathologists 
who were recruited for the M-Path study had completed resi-
dency and/or dermatopathology post-doctoral training, had 
interpreted skin specimens in their clinical practices in the 
preceding year, and planned to do so for the next two years. 
Three dermatopathologists participated in this study as mem-
bers of the M-Path consensus panel, each with expertise in 

Table 1  Dataset summary MPATH-Dx Class # of Cases
(Train 60%)

# of Cases
(Validation 20%)

# of Cases
(Test 20%)

Total

1 and 2 26 9 9 44
3 26 9 9 44
4 24 8 8 40
5 26 9 9 44
Total cases 102 35 35 172
Total interpretations 507 180 169 856
Total patches (256 × 256) 96614 15812 23440 135866
Total patches (512 × 512) 26699 4691 6604 37994
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cutaneous melanocytic lesions (see “Consensus Reference 
Diagnosis and Relationship to Diagnostic Accuracy” sec-
tion). Each of the pathologists from these two groups viewed 
and diagnosed these cases independently, and their viewport 
logs are available. Each case in our dataset was interpreted 
by one consensus reference panel dermatopathologist and an 
average of five community pathologists.

Consensus Reference Diagnosis and Relationship 
to Diagnostic Accuracy

The consensus reference panel of three dermatopathologists 
with internationally recognized expertise independently 
interpreted the full set of 240 cases in glass slide format and 
then participated in a series of six full-day review meetings 
as part of the earlier M-Path study [46]. Utilizing a multi-
headed microscope during the review meetings, they agreed 
on a consensus diagnosis for each case using a modified 
Delphi approach [46] and wrote case guidelines together 
for each of the 240 cases. Cases were then digitized, and 
an additional dermatopathologist from the M-Path research 
team joined the panel to determine a consensus rectangular 
region as the ROI for each case. ROIs were selected by the 
expert dermatopathologists as the area that best supported 
their diagnosis and best represented the critical features on 
the slide, as described in the aforementioned case guide-
lines. These variable-sized ROIs provide valuable, diagnos-
tically important information, and can be extracted using 
their coordinates. In this project, we evaluate diagnostic 
accuracy by assessing the agreement between the diagno-
sis provided by community pathologists and the consensus 
diagnosis determined by our panel of three internationally 
recognized dermatopathologists. Diagnostic error is a met-
ric used to measure the divergence between a pathologist’s 
diagnosis and the consensus diagnosis. For instance, if the 
consensus diagnosis is class 3 and the pathologist’s diag-
nosis is class 2 or class 4, it would be considered a 1-class 
error. Note that these are the diagnostic accuracy and error 
of the pathologists and are unrelated to the accuracy of the 
proposed method.

Data Split

From the M-Path dataset, which contained 240 patients’ 
digital WSIs of their skin biopsies, we narrowed down our 
selection to 172 cases. This selection was based on the 
availability of viewport tracking data for a case and the 
inclusion of interpretations (pathologist, case) with a maxi-
mum of 1-class error, as defined in the “Consensus Refer-
ence Diagnosis and Relationship to Diagnostic Accuracy” 
section. As a consequence of this criterion, a total of 856 
interpretations (an average of 5 pathologists independently 
interpreted each case) were retained out of the initial 1036 

interpretations. We analyze our WSIs at 10 × magnifica-
tion as they provide enough clinical information to allow 
diagnostic classification by the pathologists for most cases, 
yet are of reasonable size for processing. To address the 
challenges posed by the large size and variability of WSIs, 
various processing techniques can be applied. While one 
approach involves down-sampling and resizing the WSIs 
to a fixed size, this can lead to a loss of valuable infor-
mation. Instead, we employ a cropping strategy, dividing 
the WSIs into non-overlapping patches of size 256 × 256 
and 512 × 512. By processing each patch individually, we 
can retain important details while effectively managing the 
computational requirements associated with the analysis 
of WSIs. Our dataset was split and stratified based on the 
consensus MPATH-Dx class of each case to train (60%), 
validation (20%), and test (20%) sets. This ensures that each 
subset contains a representative distribution of the four dif-
ferent MPATH-Dx classes. In Table 1, we provide a sum-
mary of the size of the train, validation, and test subsets.

Methods

In this section, we outline the various components of our 
pipeline. Initially, we detail the method of extracting impor-
tant regions from the viewport data. Following that, we delve 
into the process of generating heatmaps based on these criti-
cal viewports. Furthermore, we present the network archi-
tecture and discuss the evaluation metrics employed in our 
study. Our codebase is available at: https:// github. com/ fGhez 
loo/ ROI- Local izati on- melan oma.

Extracting Viewing ROIs

We employed the method proposed by Mercan et al. [35] to 
extract diagnostically important areas from WSIs based on 
pathologists’ viewing behavior. This method involves three 
behaviors: zoom peaks, slow pannings, and fixations. We 
describe these three behaviors below and more details about 
their methodology can be found elsewhere [35].

• Zoom peaks: These are log entries where the zoom level 
is higher than the previous and the next entries. A zoom 
peak identifies a region where the pathologist intention-
ally zoomed to look at a higher magnification.

• Slow pannings: These are the log entries where the zoom 
level remains constant, and the displacement between the 
center of two viewports is small (less than 100 pixels). 
Slow pannings are intended for investigating a slightly 
larger area without completely moving the viewport.

• Fixations: These are the log entries where the duration 
is longer than 2 s. Fixations identify the areas to which 
a pathologist focuses extra attention by looking at them 
longer. Entries longer than 1 min were excluded due to 

https://github.com/fGhezloo/ROI-Localization-melanoma
https://github.com/fGhezloo/ROI-Localization-melanoma
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the assumption that the pathologist was not actively inter-
preting during that time.

In histopathologic diagnosis, the field of view holds sig-
nificance for pathologists, as they can explore digital cases 
by zooming in and out. Lower magnification viewports 
encompass a larger area of the WSI. To maintain control 
over the size of extracted viewports using this methodol-
ogy and to identify more precise regions within the images, 
we exclusively consider viewports with a magnification 
greater than 5 × . In the following sections, we refer to these 
regions as viewing ROIs. Note that these regions are not 
necessarily related to the final diagnosis given to a case by 
the expert and may include distracting regions as well as 
diagnostic regions. Figure 1 shows how viewing behaviors 
of different pathologists differ while viewing the same case 
which results in different viewing ROIs.

Generating Viewing Heatmaps

Each skin biopsy case in our dataset is independently viewed 
by an average of 5 community pathologists. We generated 
a single heatmap for each case by getting the union of all 
viewing ROIs extracted from pathologists’ interpretations 
as described in the “Pathologists’ Viewport Data” section 
and shown in Fig. 2. However, to reduce the distracting areas 
viewed by pathologists, we only consider interpretations 
with a maximum of 1-class diagnosis error as defined in the 
“Consensus Reference Diagnosis and Relationship to Diag-
nostic Accuracy” section. We define an accurate diagnosis 
as a diagnosis in agreement with the consensus reference 
classification and diagnosis error as a difference between the 
pathologist’s diagnosis and the consensus diagnosis.

We generated a pixel-level heatmap based on the duration 
each pixel was viewed. The total viewing time for each pixel 

Fig. 1  Each row visualizes a different pathologist’s viewing pat-
terns and behaviors. Left: All viewports are shown in rectangular 
regions with black borders. Middle: Traces of the viewports by 
connecting the center of rectangles shown on the left, starting the 

viewing process from the green circle, and ending viewing of the 
case with the red circle. Right: Viewing ROIs extracted from all 
viewports on the left using zoom peaks (blue), slow pannings (red), 
and fixations (green)
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across all viewports was accumulated to determine its heat-
map value. These heatmaps were then normalized to values 
between 0 and 1. This means regions with a lower value 
(less bright regions) are of lower importance and pixels with 
higher values (brighter regions) are more important in the 
diagnosis as they have been viewed more during diagnosis. 
These heatmaps are used as the ground truth in this study.

Method and Experiment Setup

Autoencoders, as initially conceptualized [50], are 
designed to reconstruct their input. They are mainly com-
posed of an encoder network that maps input data into a 
low-dimensional latent space and a decoder network that 
reconstructs the input from this latent space representation. 

The objective is to ensure the reconstructed version closely 
resembles the original. Encoder-decoder models are opti-
mized by minimizing the disparity between the input and 
output images, typically by using mean squared error 
(MSE) as a loss function. This equips them with the profi-
ciency to reconstruct images from condensed representa-
tions with high fidelity.

Deep learning has shown considerable potential in med-
ical image analysis applications in recent years [51–59]. 
However, translating research breakthroughs into clini-
cal tools remains a challenging process [60]. One of the 
primary barriers is the scarcity of high-quality labeled 
data required for developing accurate models [61]. Trans-
fer learning [62] offers a solution by leveraging a model 
pre-trained on a different task, like ImageNet [63], as a 

Fig. 2  Left: Extracted viewports from four different pathologists (see 
the “Data Split” section for pathologists’ selection criteria) indepen-
dently viewing the same case. Middle: Union of all the viewports 
shown on the left column. Right: Generated grayscale heatmap of the 

middle column viewports based on the viewports’ duration and the 
colored version overlaid on top of the WSI, highlighting the impor-
tant regions

Fig. 3  Pipeline of the ROI detection model. The encoder trans-
forms input patches into a latent representation z, while the 
decoder then reconstructs these inputs from the latent space back 

into the original pixel space. See the “Method and Experiment 
Setup” section for details of the encoder and decoder architectures 
of the model
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foundation for a novel task. In the context of encoder-
decoder architectures, transfer learning can be used to fine-
tune a pre-trained model as the encoder to extract features 
for a new task.

In this study, we used three model architectures to recon-
struct input images as illustrated in Fig. 3: a convolutional 
autoencoder (ConvAE), a U-Net, and an Attention U-Net 
with attention.

• ConvAE: We initialized the encoder with the 
ResNet-18 [64] model pre-trained on ImageNet [63]. 
Our decoder consisted of 5 deconvolution layers with 
ReLU activation, except for the final layer, which used 
sigmoid activation.

• U-Net and Attention U-Net: We used the implementa-
tion of U-Net [65] by Yakubovskiy [66]. Both models 
were initialized with ResNet-34 [64] pre-trained on the 
ImageNet dataset as the encoder and a standard U-Net 
decoder. Figure 3 demonstrates the pipeline of our sys-
tem. The Attention U-Net incorporated spatial Squeeze 
and channel Excitation (scSE) attention modules [67].

For our experiments, we used the Adam optimizer 
with a learning rate of 0.001. For the 256 × 256 patch size 
experiments, we used 2 GPUs with a 64 batch size. For 
the 512 × 512 patch size experiments, we used 4 GPUs 
with a 32 batch size. Models were trained on the training 
set and validated using the validation set to stop train-
ing when the model’s performance started to degrade and 
avoid overfitting. All experiments were done on NVIDIA 
GeForce GTX 1080 GPUs with 8 GB memory each.

For image pre-processing, we used the ImageNet standard 
normalization, setting the mean to (0.485, 0.456, 0.406) and 
the standard deviation to (0.229, 0.224, 0.225). Additionally, 
we employed a diverse set of image augmentations, including 
horizontal and vertical flips, random cropping, sharpening, 
embossing, brightness adjustments, hue and saturation modi-
fications, grayscale conversion, and contrast adjustments. 
These augmentations were applied in a randomized sequence 
to enhance the robustness and variability of our dataset.

In addition to our approach, we also re-implemented the 
method by Mercan et al. [35]. Originally designed for ROI detec-
tion in breast biopsy images, we adapted, trained, and tested this 
model using our M-Path dataset. The method follows a bag-of-
words approach [68] for feature construction. By using a sliding 
window, the WSI is divided into 1024 × 1024 bags, overlapping 
by 512 pixels in both dimensions. Each bag is further divided into 
128 × 128 non-overlapping words (8 × 8 words per bag). Using 
the K-means clustering algorithm, words are grouped into 40 
clusters based on their color (Lab) and texture (LBP) features 
extracted earlier. For each bag, a frequency histogram is calcu-
lated, representing the distribution of the 8 × 8 patches across the 
40 clusters. Next, viewing ROIs are extracted as described in 

the “Extracting Viewing ROIs” section, and bags are labeled as 
either positive (ROI) or negative (non-ROI) based on their inter-
section with the extracted viewing ROIs. Finally, we employed 
a Random Forest classifier to distinguish between ROI and non-
ROI. More details of this method can be found in [35].

Evaluation

In this section, we introduce the methods we used for 
evaluating the performance of our model. First, we define 
the metrics used for the quantitative assessment of the 
model. Second, we explain the clinical evaluation of the 
study done by three dermatopathologists. Finally, we show 
how the proposed framework can enhance computer-aided 
diagnosis (CAD) systems.

Quantitative Assessment

To evaluate our results at an individual patient skin 
biopsy WSI level, we stitched patches generated by our 
model together to generate the WSI-level heatmap. We 
used mean squared error (MSE) and structural similar-
ity index (SSIM) to measure the similarity between the 
reconstructed heatmaps and the ground truth. Additionally, 
we employed standard pixel-level segmentation metrics, 
including Intersection over Union (IoU), precision, recall, 
and F1-score to assess model’s performance. Collectively, 
these metrics offer a comprehensive assessment of the 
model’s capability.

• MSE:  Measures the average squared differences 
between the predicted and actual values, commonly 
used to assess an autoencoder’s performance. In our 
context, the predicted value corresponds to the model-
generated heatmap, while the actual value is the ground 
truth from pathologists’ viewing behavior. MSE is 
defined below in Eq. (1) where m and n are the dimen-
sions of the image and yi,j and ýi,j are (i, j) pixel values 
at input and output images, respectively.

• SSIM: Measures the similarity between two images 
by comparing their structural information, including 
luminance, contrast, and structure. It provides a score 
ranging from 0 to 1, with 1 denoting identical images. 
In our study, we calculated the SSIM score between the 
model’s reconstructed heatmap and the ground truth 
heatmap. The SSIM score was used as an objective 
measure of the similarity between the two images, with 
a higher score indicating a better match. The formula 
for calculating SSIM is provided in Eq. (2) where l, c, 

(1)MSE =
∑m

i=0

∑n

j=0

(

yi,j − ýi,j
)2
∕m ∗ n
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and s represent the luminance, contrast, and structure 
components. The parameters α, β, and γ are used to 
weight each component, with typical values of 0.01, 
0.03, and 0.03, respectively. and  are the input and out-
put images, respectively.

• IoU, precision, recall, and F1-score: Measure the 
overlap between the generated heatmap and the ground 
truth, revealing how much of the ground truth is identi-
fied by the model. First, we apply a binary thresholding 
for each heatmap with a threshold of 0.5, categorizing 
pixels with values above this threshold as “1” (ROI) 
and below as “0” (non-ROI). We conducted experi-
ments with several threshold values—0.4, 0.45, 0.5, 
0.6, and 0.7—and found 0.5 to be the best threshold for 
this task. Based on this binary thresholding, the defini-
tions of true positive (TP), false positive (FP), and false 
negative (FN) are given below:

– TP refers to the number of pixels correctly pre-
dicted as ROI.

– FP denotes the pixels incorrectly predicted as 
ROI.

– FN represents the ROI pixels that were missed by 
the model.

Clinical Evaluation by Dermatopathologists

We asked three co-author dermatopathologists to review 
the model-generated heatmaps on the test set contain-
ing 35 WSIs and grade the model’s performance using 
discrete scoring. It’s crucial to note that these dermato-
pathologists are different from the community pathologists 

(2)SSIM = (ly, ý)α ∗ c(y, ý)β ∗ s(y, ý)γ

(3)

Precision = TP∕(TP + FP)

Recall = TP∕(TP + FN)

F1 = 2 ∗ Precision ∗ Recall∕(Precision ∗ Recall)

IoU = TP∕(TP + FP + FN)

whose viewing behavior was used to train our model. Their 
task was to evaluate the segmentation of the whole slide 
images. Each dermatopathologist received an individual 
Google Forms survey. Each of the 35 WSIs was presented 
at 10 × magnification alongside the grayscale model-
generated heatmaps. An overlay of the heatmap on the 
corresponding WSI was also available for better clarity. 
The dermatopathologists addressed two questions aimed 
at discerning whether the model was over-detecting or 
under-detecting essential regions:

Q1: Does the heatmap closely correlate with your viewing 
behavior? Rate yes, somewhat, or no.

Q2: Does the most intense region of the heatmap include the 
region most representative of your diagnostic impres-
sion? Rate yes or no.

It’s essential to underscore that human analysis, particu-
larly within medical evaluations, embodies a degree of inher-
ent subjectivity. Recognizing this, our dermatopathologists 
convened in a collaborative session before their individual 
case analyses to develop standardized definitions to follow for 
each of the two clinical questions. This meeting enabled them 
to arrive at a mutual understanding of the interpretation of 
the cases. This consensus-building initiative was strategically 
implemented to instill a level of uniformity in the evaluation 
process, aiming to reduce individual biases. We analyzed the 
feedback from all three surveys, considering each one indi-
vidually and collectively. We categorized the responses for Q1 
and Q2 into distinct labels. Specifically, for Q1, the responses 
were categorized as “No,” “Somewhat,” and “Yes.” For Q2, 
the responses were categorized as “No” and “Yes.” 

Computer‑Aided Diagnosis

The proposed ROI detection framework generates heat-
maps that can be used as supplementary signals to train 
Diagnostic model. We utilize the architecture presented in 
[69] for this purpose. In this architecture, multiple masks 
can be appended as additional channels to the input image. 
Using a MobileNetV2 backbone [70], we extract features 
from the images at three scales of 7.5x, 10x, and 12.5x. 

Table 2  Results of experiments. 
All experiments are evaluated 
using the M-Path dataset 
(see the “Dataset and Pre-
processing” section)

Model architecture Patch size Avg. MSE Avg. SSIM Precision Recall F1 IoU

v1: ConvAE 256 0.0146 0.876 0.28 0.49 0.36 0.18
v2: U-Net 256 0.0149 0.709 0.27 0.53 0.36 0.20
v3: Attention U-Net 256 0.0147 0.712 0.26 0.45 0.33 0.18
v4: ConvAE 512 0.0147 0.692 0.20 0.48 0.28 0.15
v5: U-Net 512 0.0155 0.682 0.19 0.44 0.27 0.14
v6: Attention U-Net 512 0.0157 0.677 0.18 0.53 0.27 0.15
Mercan et al. [35] - - - 0.08 0.42 0.14 0.08
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These feature vectors are subsequently fed into ScATNet 
[71] which aggregates information of the three scales to 
perform the diagnostic task using Transformer blocks. 
Specific details regarding the model architecture can be 
found in [69, 71]. We trained our models for 200 epochs 
on a single NVIDIA RTX A4000 GPU with 16 GB GPU 
memory. All the training details and hyperparameters are 
the same as those in [71].

We train two models for comparison: one using only 
WSIs and the other incorporating the heatmaps generated 
by our ROI detection model as a fourth channel added to the 
WSIs. We evaluate the models using F1-score (equation 3), 
as well as sensitivity (recall) and specificity as shown in 
equation 4. Given that this is a multi-class classification 

problem, TP, FP, FN , and TN are calculated by summing 
across all classes.

Results

In this section, we provide the results of our experiments. We 
present the results of our experiments and their improvement 
over the method by Mercan et al. [35] in Table 2. Experi-
ments v1–v3 and experiments v4–v6 use patch sizes of 256 

(4)
Sensitivity (recall ) = TP∕(TP + FN)

Specif icity = TN∕(TN + FP)

Fig. 4  Visualized result for four 
example WSIs. Left: WSIs. 
Middle: Ground truth heatmaps 
from pathologists’ viewing 
ROIs (see the “Generating 
Viewing Heatmaps” section). 
Right: Model-generated heat-
map on unseen data

Pathologists’ viewing heatmap Model-generated heatmapWhole Slide Image
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and 512, respectively. In order to validate the consistency of 
our model’s performance, we conducted multiple runs with 
three distinct random seeds and reported the average values 

for each metric. Our best model outperforms Mercan et al. 
[35] by 20% in precision, 11% in recall, 22% in F1-score, 
and 12% in Intersection over Union (IoU). Figure 4 shows 
heatmaps generated by our model on an unseen test set, 
alongside their ground truth viewing heatmaps. Addition-
ally, we conducted experiments to investigate the effects of 
patch size and types of pathologists’ viewing behavior on 
the model’s performance. The results of these experiments 
are discussed in the subsequent sections.

WSIs often contain multiple important regions. How-
ever, the ground truth heatmap, generated from pathologists’ 

Fig. 5  Proportion of responses from individual pathologists and the 
average of all three pathologists for a Q1: Does the heatmap closely 
correlate with your viewing behavior? and b Q2: Does the most 
intense region of the heatmap include the region most representative 

of your diagnostic impression? (See the “Clinical Evaluation by Der-
matopathologists” section for the description of the clinical evalua-
tion)

Table 3  Results of WSI diagnosis. All numbers are average scores 
over 5 random seeds per experiments

Model Input Micro F1-score Specificity Sensitivity

WSI 0.59 0.86 0.59
WSI + Heatmap  0.63 0.88 0.63

Fig. 6  Comparison of the heatmaps generated by our ROI prediction model (middle) and the saliency maps of ScATNet [71] trained for diagno-
sis using WSIs (right). Ground truth heatmaps, based on pathologists' viewing behavior, are shown on the left
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viewing behavior (see the “Generating Viewing Heatmaps” 
section), might not encompass all of these important regions. 
We observed that our model identified certain areas with 
characteristics akin to these critical regions, leading to a high 
false-positive rate. Consequently, the conventional pixel-level 
segmentation metrics highlighted in the “Quantitative Assess-
ment” section do not entirely reflect the model’s efficacy. To 
address this, we performed a clinical evaluation, involving 
three dermatopathologists (see the “Clinical Evaluation by 
Dermatopathologists” section). This evaluation comprised 
two questions, measuring the resemblances between the 
pathologists’ assessment of the critical regions of the WSI and 
the model-generated heatmaps. To provide a clear representa-
tion of the feedback, we used spineplots to display the propor-
tion of responses within each category for each pathologist, as 
well as the average proportion across all pathologists. Figure 5 
visualizes the distribution of responses, providing insights 
into the consensus among pathologists and highlighting any 
variations in their evaluations. The outcomes from this assess-
ment demonstrate the capability of our model to generate a 
heatmap that replicates the regions that a pathologist would 
view and also to highlight the regions’ most representative of 
the final diagnosis.

In Table 3, we present the results of our diagnostic experi-
ments. Each model was trained using 5 different random 

seeds and we are reporting the average scores of each experi-
ment. The results indicate an improvement in the diagnostic 
performance of the model when the heatmap is included as 
an additional channel in the input. Additionally, saliency 
analysis using gradients helps identify relevant areas in an 
input image that contributed to the prediction. We compare 
the heatmaps generated by our model with the saliency maps 
of the ScATNet [71] model trained only on WSIs. Figure 6 
shows that our model’s heatmaps are more aligned with 
pathologists’ viewing heatmaps.

Patch Size

To investigate the impact of patch size on the performance of 
our model, we set up our experiments with two different patch 
sizes: 256 × 256 and 512 × 512. A summary of the number of 
training and testing samples is provided in Table 1. By reduc-
ing the size of patches, the model loses insight into the loca-
tion of these patches and their neighbor patches. On the other 
hand, increasing the size of patches requires more computing 
resources and higher training time. The results of these experi-
ments show that a smaller patch size results in a more fine-
grained heatmap, which is more similar to the original heat-
maps. Figure 7 shows the results from using 256 × 256 patches 
and 512 × 512 patches compared to the ground truth heatmap.

Fig. 7  Left: Heatmap generated using pathologists’ viewing ROIs (see section the “Generating Viewing Heatmaps” section). Middle and right: 
Heatmaps generated by the model on unseen data with 512 × 512 and 256 × 256 patch sizes, respectively
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Consensus Reference Panel vs Community 
Pathologists’ Viewport Data

We investigated how viewing behavior from two groups 
of pathologists, community and M-Path consensus refer-
ence panel pathologists, would impact the performance of 
the model in detecting more precise ROIs. Hence, we used 
viewing behavior heatmaps generated from viewports of 
these two groups as input for training our model. Figure 8 
shows a comparison of the consensus reference panel and 
community pathologists’ viewing behavior heatmaps and the 
corresponding results generated using these heatmaps during 
training. Heatmaps of the consensus reference panel are less 
cluttered and focused on a few smaller regions whereas com-
munity pathologists perform a more comprehensive scan of 
the slide.

Discussion

Whole slide imaging has provided the opportunity to study 
the diagnostic viewing process of pathologists, yielding 
valuable insights that can be utilized to develop innovative 
training and evaluation programs as well as possibly using 
the data to improve computer-aided diagnosis systems. We 
have introduced an ROI detection system as the first step 
of the diagnosis process, aimed at assisting pathologists in 
quickly identifying relevant regions. The ROIs, identified 

using pathologists’ viewing behaviors such as zoom peaks, 
slow pannings, and fixations were utilized to generate a 
grayscale heatmap which guides our model to focus on cru-
cial image regions. We employed three deep learning archi-
tectures for reconstructing the heatmaps. These regions 
may not necessarily represent the definitive ROIs of the 
digital slide but replicate a pathologist’s viewing patterns 
that can include distracting or misleading regions, provid-
ing a more realistic depiction of the diagnostic process.

Our model outperformed the Mercan et al. method [35], 
with an emphasis on high recall, capturing all relevant 
regions to reduce the chance of missing crucial information, 
despite potentially including some false positives. The use of 
viewport-extracted ROIs and square-shaped patches allowed 
our model to align closely with the ground truth in terms of 
shape and structure. In additional experiments, we analyzed 
the impact of patch size and type of pathologists’ viewing 
behavior on our model’s performance. Larger patch size had 
little effect on performance but required more computing 
resources. Models trained using the consensus reference panel 
pathologists’ viewing heatmaps produced fewer false-positive 
samples since these heatmaps highlight smaller image regions 
as these pathologists did not require a lot of scanning to find 
the ROIs. Consequently, the final output of the model gener-
ated from the viewing data of the consensus reference panel 
pathologists consisted of smaller and fewer ROIs.

The intrinsic complexity of ROI detection can lead the 
model to detect regions as ROIs that are not present in the 

Fig. 8  Top: The consensus ref-
erence panel pathologist ground 
truth heatmap and its model-
generated heatmap. Bottom: 
Community pathologists ground 
truth heatmap and its model-
generated heatmap
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ground truth set. However, this does not imply that these 
regions are insignificant. These regions can be ignored if 
found irrelevant by pathologists. The findings from our clini-
cal evaluation demonstrate the effective performance of our 
model, despite its low precision. Moreover, the tracking soft-
ware records visible regions in a rectangular shape, intro-
ducing unimportant surrounding regions and white space 
background, especially at lower zoom levels. Despite our 
efforts to minimize non-tissue patches during WSI pre-pro-
cessing, the complete exclusion of unwanted regions was not 
achievable. Furthermore, the absence of eye tracking data 
restricts our ability to accurately determine the specific focus 
points of pathologists within these full viewports. Despite 
these limitations and challenges, our model demonstrated 
efficiency by simplifying and accelerating ROI annotation, 
thereby reducing costs.

We integrated the results of the ROI detection model 
into a computer-aided diagnosis system as supplementary 
signals and demonstrated that the performance of the diag-
nosis model improved with this addition. Moreover, we 
visualized the saliency maps of the diagnosis model trained 
solely on WSIs (without the heatmaps). Upon comparison, 
our model’s generated heatmaps showed greater alignment 
with pathologists’ viewing heatmaps than the saliency maps 
of the diagnosis model. 

In the field of ROI detection in histopathological 
images, our approach distinguishes itself by integrating 
pathologists’ viewing behavior data from their clinical 
review and interpretation of each case into the model’s 
training; this viewing behavior data is quite distinctive 
from the many methods that predominantly rely on manu-
ally labeled ROIs. While numerous studies have focused 
on an object detection approach, our analysis suggests that 
this might not be the optimal paradigm for such a nuanced 
task. ROIs in histopathological images differ from standard 
objects found in natural images, challenging exact bound-
ing box comparisons. Instead, our model uses behavior-
driven heatmaps to effectively highlight diagnostically 
relevant regions. This unique methodology, grounded in 
real-world clinical insights, positions our approach a notch 
above most state-of-the-art techniques, which often over-
look the importance of replicating the intricate clinical 
viewing behavior of pathologists. Moreover, the lack of 
available public datasets that capture viewing behavior in 
histopathological images is a recognized challenge. This 
restricts external validation of our methodology on diverse 
datasets and poses a barrier to direct comparisons with 
other existing techniques.

As the future direction, the addition of precise eye tracking 
data would help determine the exact focus of pathologists 
within the full rectangular viewports, potentially refining the 

output of the model. The proposed ROI detection model can 
be used for developing automated diagnosis systems by locat-
ing crucial regions rather than processing the entire slide. 
Additionally, it would be beneficial to explore the optimal 
integration of these models into practical, clinical settings 
and understand how this technology can be more tailored 
to individual needs for pathologists at varying experience 
levels. This is because integrating CAD models into health-
care practice requires strict regulatory standards, exhaustive 
validation, and certification to ensure patient safety and com-
pliance with medical protocols. Moreover, scalability is a 
pivotal concern, as models proven in controlled experimental 
settings must be adeptly tailored to accommodate the het-
erogeneity of data encountered in practical clinical environ-
ments. This type of algorithm to identify important image 
ROIs could be quite helpful as a resource for training and 
educating the next generation of pathologists.

Conclusions

In this study, we explored the complex viewing behaviors of 
pathologists in diagnosing a slide, gaining insight into their 
decision-making process. This understanding has the poten-
tial to enhance the training and education of pathologists and 
to facilitate the development of computer-aided and AI tools 
for supporting pathology diagnosis. Achieving human-level 
performance in AI often necessitates a substantial volume of 
accurately labeled data, a significant challenge addressed by 
automated labeling methods. The new method described in our 
paper aims to mitigate the data labeling challenge by leverag-
ing the combined expertise of human experts and algorithmic 
models. We utilized viewport-extracted ROIs, and our model 
achieved improved performance compared to previous methods. 
As pathology labs transition to digital modalities, the collec-
tion of viewing behavior data from pathologists can be scaled 
up. Integrating this amassed data with our proposed framework 
offers a faster and less expensive alternative to manual ROI 
annotation by pathologists. The validation results of our study 
show an increase of 20% in precision, 11% in recall, 22% in 
F1-score, and 12% in IoU compared to previous methods. We 
demonstrated how this ROI detection system can be integrated 
with a CAD system to im-prove its performance, further indicat-
ing that the predicted heatmaps are sufficiently accurate, making 
them valuable priors for guiding the focus of attention in future 
medical image analysis tasks. In conclusion, deep learning has 
revolutionized computer-aided diagnosis models by enabling the 
extraction of complex patterns directly from medical images. 
Our findings contribute to enhancing the accuracy and efficiency 
of CAD systems, supporting clinical practices, and fostering 
advancements in the field of digital pathology.
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