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Abstract

Dense pixel-specific representation learning at scale has
been bottlenecked due to the unavailability of large-scale
multi-view datasets. Current methods for building effective
pretraining datasets heavily rely on annotated 3D meshes,
point clouds, and camera parameters from simulated en-
vironments, preventing them from building datasets from
real-world data sources where such metadata is lacking.
We introduce a pretraining dataset-curation approach that
does not require any additional annotations. Our method
allows us to generate multi-view datasets from both real-
world videos and simulated environments at scale. Specif-
ically, we experiment with two scales: MIMIC-1M with
1.3M and MIMIC-3M with 3.1M multi-view image pairs
and train models with different masked image modeling ob-
jectives. Through our comprehensive experimental anal-
ysis we show that: Representations trained on our auto-
matically generated MIMIC-3M outperform those learned
from expensive crowdsourced datasets (ImageNet-1K) and
those learned from synthetic environments (MULTIVIEW-
HABITAT) on three dense geometric tasks: depth estima-
tion on NYUv2 (↑1.7%), and surface normal estimation on
Taskonomy (↓2.05%), and depth estimation on Taskonomy
(↓7.5%) and performs on-par with MULTIVIEW-HABITAT
on Taskonomy edges and curvature tasks. Larger dataset
(MIMIC-3M) improves performance, which is promising
since our curation method can arbitrarily scale to produce
even larger datasets. The code and instructions to down-
load, access, and use MIMIC-3M can be found here.

1. Introduction
Today, dense vision tasks—depth prediction, surface nor-
mal estimation, semantic segmentation, and pose estima-

* The authors contribute equally to this work.

tion— often rely on pretrained representations [2, 15]. Nat-
urally, self-supervised learning lends itself as a potential
solution. Despite the impressive performance on object
recognition and other high-level tasks, self-supervised rep-
resentations for dense prediction tasks have not yet fully
delivered. The representations trained on single-view im-
ages lack the correspondences required for 3D reasoning
of our visual world [35]. Moreover, the joint-embedding-
based objectives (SimCLR [8], MoCo [14], DINO [6]) that
are often used on object-centric datasets utilize augmenta-
tions that do not preserve geometric pixel-wise information.
In response, the general purpose representation learning
method—masked image modeling and specifically masked
autoencoders (MAE)—has become a popular default mech-
anism for such tasks [2, 15, 35]. Unfortunately, recent find-
ings suggest that the representations learned by MAE are
devoid of sufficient local information for tasks like depth
estimation [35].

Based on these observations, we ask the following ques-
tion: What data do we need to learn useful representations
for dense vision tasks? We find a potential answer in cogni-
tive science: 3D understanding of the physical world is one
of the first visual skills emergent in infants; it plays a criti-
cal role in the development of other skills, like depth estima-
tion, understanding surfaces, occlusions, etc [16]. Scientists
hypothesize that 3D understanding emerges from infants
learning the relationship between changes in visual stim-
uli in response to their self-motion [18], i.e. 3D awareness
emerges by learning correspondences between appearances
as the infant’s vantage point changes [26].

Very recently, a machine learning paper proposed a
variant of masked image modeling, named cross-view
completion (CroCo), which uses an objective that opera-
tionalizes learning representations in response to changes
in self-motion [35]. Given a pair of multi-view images,
CroCo reconstructs a masked view using the second view
as support. Unfortunately, CroCo is a data-hungry objec-
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tive. Its synthetic MULTIVIEW-HABITAT dataset of 1.8M
multi-view images was curated using a method that requires
ground truth 3D meshes to be annotated. Although CroCo
shows promise, the lack of datasets with 3D annotations is
a severe limitation, preventing its objective from scaling.
If one could mine large-scale multi-view datasets, perhaps
dense vision tasks could enjoy the success that the field of
natural language processing has welcomed due to the avail-
ability of large-scale pretraining text [5].

In this work, we contribute MIMIC: a data-curation
method for developing multi-view datasets that scale. Our
method does not require any 3D meshes and can generate
multi-view datasets from unannotated videos and 3D simu-
lated environments. We leverage classical computer vision
techniques, such as SIFT (Scale Invariant Feature Trans-
form) keypoint detection [23], RANSAC [12], homography
estimation [13], etc. to extract correspondences between
frames in open-sourced unannotated videos (see Fig. 1).
In other words, MIMIC produces a pretraining dataset for
masked image modeling using image correspondences. Our
work enables data curation from both real and synthetic
sources and we hope it will help advance further research
in large-scale dense representation learning.

We experiment with two scales: MIMIC-1M and
MIMIC-3M, and show that they effectively train useful
self-supervised (MAE and CroCo) representations. See
?? for example image pairs obtained from the MIMIC-
3M dataset. Our experiments show the following: Most
importantly, representations learned from MIMIC-3M,
our automatically generated dataset, outperform those
trained using ImageNet-1K [10], an expensive human-
labeled dataset on dense geometric tasks: depth estima-
tion (NYUv2 [25]) and surface normals (Taskonomy [40]);
Second, MIMIC also trains better representations than
MULTIVIEW-HABITAT [35], a baseline that uses 3D anno-
tations to automatically generated dataset, on both dense
geometric tasks, such as depth estimation (NYUv2) and
surface normal prediction (Taskonomy), as well as on
dense object-related tasks, such as semantic segmenta-
tion (ADE20K [41]) and pose estimation (MSCOCO [20]).
Third, larger pretraining dataset (MIMIC-3M > MIMIC-
1M) improves performance, which is promising since our
curation method can arbitrarily scale to produce even larger
datasets. Finally, our representations demonstrate better
few-shot performance on depth estimation (NYUv2) and se-
mantic segmentation (ADE20K) compared to MULTIVIEW-
HABITAT.

2. Related work

In this section, we discuss masked image modeling - a
promising paradigm for self-supervised dense representa-
tion learning at scale and data curation methods for large-
scale visual learning.

Masked Image Modeling. Amongst masked image mod-
eling, BEiT [3] proposes the pre-training task of recovering
the visual tokens from a corrupted image, MAE [15] learns
by masking patches of an image and inpainting the masked
patches; MultiMAE extends MAE to a multi-task formula-
tion [2]. Their approach uses pseudo-labels– hence, Multi-
MAE is not fully self-supervised. CroCo [35] uses cross-
view completion and ingests multi-view images. Their data
curation method, though, uses 3D metadata and meshes of
synthetic 3D environments; their dataset is also not publicly
available. By contrast, MIMIC neither needs any pseudo
labels extracted using supervised methods nor it needs any
3D meshes, point clouds, or camera parameters for dataset
curation.
Data curation for large scale visual learning. Large-scale
image datasets have incredibly accelerated progress in vi-
sual learning. ImageNet-1K, with 1.2M images annotated
by crowdsourcing led to several breakthroughs and is still a
standard dataset used for pretraining vision models. It was
manually designed to cover a diverse taxonomy of object
categories with sufficient representation of instances per
category. Unfortunately, this approach is extremely costly,
not scalable, and serves as an upper bound for what is possi-
ble with manual curation instead of our automatic curation.
Moreover, the efforts so far have been focused on high-level
semantic tasks like classification, and large-scale pretrain-
ing datasets for dense prediction tasks such as MULTIVIEW-
HABITAT with synthetic image pairs mined using Habitat
simulator [31] are not available publicly. MULTIVIEW-
HABITAT uses annotations such as camera parameters and
meshes to sample image pairs with a co-visibility threshold
of 0.5. The use of such metadata for mining image pairs is
a limiting factor as (1) it requires expensive sensors to ob-
tain these annotations on real-world datasets (2) it cannot
be scaled up to mine web-scale data sources where this in-
formation is not readily available. MVImgNet [38], a recent
effort for building large-scale multiview dataset uses crowd-
sourcing to collect object-centric data. Infinigen [27] on the
other hand, introduces a procedural generator of synthetic
3D scenes to create a training dataset. While these direc-
tions show promise, the need for manual intervention is a
major limitation. Moreover, the use of synthetic pretraining
data for real-world applications is still an open question.
To address these challenges we propose a methodology for
curating multi-view datasets using videos and synthetic 3D
environments. We demonstrate that it is possible to use our
data collection strategy and outperform on different dense
vision tasks without making use of any explicit annotations.

3. MIMIC: Curating multi-view image dataset
for dense vision tasks

While CroCo recently utilized MULTIVIEW-HABITAT, a
multi-view dataset, their dataset creation process requires
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Figure 1. We introduce a data-curation method that generates multi-view image datasets for self-supervised learning. Our method identifies
potential data sources, including videos of indoor scenes, people, and objects, 3D indoor environments, outdoor street views, and stereo
pairs to mine potential multiview images. Next, we use classical computer vision methods such as SIFT keypoint detection and homography
transformation to locate corresponding patches. Finally, we filter pairs based on a threshold for significant overlap, ensuring a substantial
percentage of pixels match between a pair.

the availability of 3D mesh, point cloud, or camera pose
information for each scene. This dependency imposes lim-
itations on the range of data sources that can be used for
crafting a multi-view dataset. Unfortunately, there is cur-
rently no large-scale publicly available dataset to address
this void. To bridge this gap, we introduce MIMIC.

MIMIC can generate multi-view datasets from unan-
notated videos and 3D simulated environments. Any data
source that contains multi-view information with static ob-
jects or at least with minimal object movement is a suitable
data source. MIMIC works by cleverly combining tradi-
tional computer vision methods (Fig. 1). The only mecha-
nism our curation process requires is a sampling mechanism
(I1, I2) ∼ g(S), where S is some data source from which
g(·) samples two images I1 and I2. For example, S can be a
video from which g(·) samples two image frames. Or S can
be a synthetic 3D environment from which g(·) navigates
to random spatial locations and samples two random image
renderings of the same scene.
Identifying data sources. We generate our MIMIC dataset
from both real as well as synthetic data sources. We use
DeMoN [34], ScanNet [9], ArkitScenes [4], Objectron [1],
CO3D [30], Mannequin [19], and 3DStreetView [39] as real
data sources. DeMoN is a dataset containing stereo im-
age pairs. ScanNet and ArkitScenes contain videos from
indoor environments. Objectron and CO3D are collec-
tions of videos containing objects. Mannequin provides
a video dataset featuring individuals engaged in the man-
nequin challenge. 3DStreetView offers a collection of street
images from multiple urban areas.

We also source data from 3D indoor scenes in
HM3D [28], Gibson [36], and Matterport [7] datasets, using
the Habitat simulator [31]. We initialize an agent randomly
in the 3D environment and design g(·) to move the agent
in random steps and directions. For each scene, the agent
moves to numerous locations and captures various views.
All our data sources with their distributions are visualized
in Fig. 2.
Mining potential pairs. The primary characteristic of the

image pairs in our dataset resides in their ability to capture
the same scene or object from varying viewpoints while ex-
hibiting a substantial degree of overlap. The dataset is de-
signed to strike a balance: the overlap is not excessively
large to the point of containing identical images, rendering
the pre-training task trivial; nor is it excessively small, re-
sulting in disjoint image pairs that offer limited utility, mak-
ing the task only self-completion. Particularly, we discard
the image pairs with a visual overlap of less than 50% and
more than 70%. We base this design decision on empirical
ablations performed in CroCo. Their experiments suggest
that cross-view completion offers no advantage if the visual
overlap is outside of this range.

In each video or scene, many image pairs can be gener-
ated. However, we focus on selecting a limited number of
pairs that are more likely to meet our desired condition of
having sufficient overlap. Nonetheless, not all of these can-
didate pairs may ultimately be chosen. For instance, when
dealing with video data, a practical strategy involves creat-
ing a list of frames at regular time intervals, which depends
on the video’s speed. By selecting consecutive frames from
this list, potential pairs are generated. Conversely, collect-
ing potential pairs in 3D scenes such as HM3D [28] or Gib-
son [36] presents greater challenges. Therefore, inspired
by CroCo, we employ the habitat simulator [31] to capture
comprehensive environment views. The agent undergoes
random rotations and movements, exploring the scene from
various perspectives. By capturing images during these ran-
dom walks, we generate potential pairs for further analysis.
The selection process involves filtering based on a speci-
fied overlap range (50% to 70%) and ensuring the inclusion
of pairs with diverse viewpoints. However, our approach
does not rely on additional annotations and solely utilizes
the available images.
Matching and measuring overlap. Given a potential im-
age pair capturing a scene, we employ the widely used SIFT
features to localize the key points in both images. Note
that these features are used only to quantify the visual over-
lap and the actual learning happens during the pretraining
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Figure 2. Distribution of Data Sources (%). Real data sources, in-
cluding DeMoN, ScanNet, ArkitScenes, Objectron, CO3D, Man-
nequin, and 3DStreetView, contribute to 32% of MIMIC. The
remaining portion consists of synthetic sources, namely HM3D,
Gibson, and Matterport.

phase.
After obtaining the key points and descriptors, we ap-

ply a brute-force matching technique to establish correspon-
dences between the key points in the first image and those in
the second image. More efficient methods, such as FLANN
matcher [24], may offer (≈ 1.24×) speedups. However, our
initial exploration shows that brute-force matching yields
better matches; also, extracting pairs is a one-time process.
We further utilize these matches to estimate the homogra-
phy matrix, using the RANSAC (Random Sample Consen-
sus) algorithm to eliminate outliers. Note that the homogra-
phy transformation holds in three scenarios–(1) when cap-
turing planar surfaces, (2) when capturing a distant scene,
and (3) when a camera undergoes a pure rotation. In real-
world videos, these assumptions may not always hold true.
Regardless, homography serves as an approximation to the
transformation. We further use this approximated matrix to
filter out unwanted image pairs with no visual overlap.

We then partition each image into non-overlapping
patches. For each patch in the first image, we search for the
corresponding patch in the second image with the highest
overlap. We randomly sample points within the first image
and match them with their correspondences in the second
image. Next, we map each patch in the first image to the
patch with the highest number of matched correspondences
in the second. Lastly, we measure visual overlap by calcu-
lating the total number of matched patches divided by all
patches. Refer to the Appendix for more details.
Filtering out degenerate matches. In our approach, the
selection of image pairs is guided by the objective of cap-
turing shared 3D information while mitigating redundancy.
Hence, the desired pairs consist of images that depict the
same objects or scenes from different perspectives. This
characteristic enables the learning model to acquire valu-
able insights about the underlying 3D structure. However,
it is crucial to avoid including pairs where one image is a
zoomed-in version of the other, as such pairs provide lim-

ited additional information.
To address this concern, we modify the overlap met-

ric used in the pair selection process. Specifically, we in-
corporate a criterion that prevents the inclusion of patches
from the first image that have exact correspondences in the
second image. Therefore, in the counting, we consider all
patches that have the same corresponding patch in the sec-
ond image as a single entity.
Overall statistics. To understand the effect of data size
we experiment with two scales. MIMIC-1M, comprises
a total of 1, 316, 199 image pairs, each capturing differ-
ent scenes or objects from varying viewpoints. Among
these pairs, 761, 751 are sourced from HM3D, 305, 197
from Gibson, 29, 658 from Matterport, 114, 729 from Man-
nequin, 22, 184 from DeMoN, 36, 433 from ScanNet, and
46, 250 from Objectron. We further expand the dataset to
create a larger version, MIMIC-3M, to contain a total of
3, 163, 333 image pairs. This expansion involves augment-
ing the HM3D dataset with an additional 699, 322 pairs, the
Gibson dataset with 351, 828 pairs, and the inclusion of new
datasets such as ArkitScenes with 81, 189 pairs, CO3D with
133, 482 pairs, and 3DStreetViews with 579, 310 pairs. By
incorporating these new datasets, we further enrich the di-
versity and quantity of image pairs available in our dataset.

4. Training with MIMIC
We analyze the effectiveness of MIMIC, by training two
models with masked image modeling objectives and evalu-
ate the learned representations on downstream dense predic-
tion tasks. We compare against existing pretraining dataset
alternatives.

4.1. Pretraining

We use MAE [15] and CroCo [35] for pretraining. We fol-
low the protocol from CroCo and use a ViT-B/16[11] as a
backbone for all our experiments with input images sizes of
224×224. We train our models on 8 RTX A6000 GPUs for
200 epochs with a warmup of 20 epochs with a base learn-
ing rate of 1.5 × 10−4, an AdamW [22] optimizer with a
cosine learning rate schedule, a weight decay of 0.05, and
an effective batch size of 4096. Lastly, we evaluate these
pretrained representations on a series of downstream dense
prediction tasks.

MAE pretraining. To understand the importance of in-
cluding correspondences in the pretraining objective, we
train MAE, which does not encode multi-view correspon-
dences and treats each image in our image pairs indepen-
dently. MAE masks out a large portion (75%) of the in-
put patches of an image and uses an asymmetric encoder-
decoder architecture to reconstruct the masked-out pixels.
Specifically, it uses a ViT-based encoder to extract the la-
tent representations of the masked view. Then it pads the
output with the masked tokens and feeds it to a lightweight
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decoder. The decoder’s output reconstruction is optimized
with an L2 loss. The reconstruction pixel targets are nor-
malized by computing the mean and standard deviation of
the image patches.

CroCo pretraining. Unlike MAE, CroCo aims to en-
code relationships between the two views of the same scene
from different viewpoints and learns to reason about the il-
lumination and viewpoint changes. CroCo reconstructs a
masked image input similar to MAE but supports the re-
construction process through an unmasked second reference
view. CroCo masks 90% of the first image. CroCo uses the
same ViT encoder as MAE, with shared weights to encode
both views. The decoding cross-attends over the second
view while reconstructing the first masked view.

4.2. Baseline Datasets.

We compare MIMIC with: ImageNet-1K [10] and
MULTIVIEW-HABITAT [35].

ImageNet-1K is a widely used large-scale dataset with
1.2M training images. It was manually designed to cover a
taxonomy of a thousand object categories. The images were
chosen to have sufficient instances per category. Therefore,
ImageNet-1K serves as an example for what is possible with
immense human data-curation effort.

MULTIVIEW-HABITAT comprises of synthetic render-
ings of indoor scenes collected using the 3D meshes
available in the Habitat simulator [31]. It is derived
from HM3D [28], ScanNet [9], Replica [32] and Repli-
caCAD [33]. This dataset is not available publicly. So,
we compare it against the released models trained on it.
MULTIVIEW-HABITAT serves as our main baseline dataset
since it is the only large-scale multi-view dataset that has
been used for training use representations for dense vision
tasks.

4.3. Downstream tasks, datasets, evaluation proto-
cols.

We evaluate our models on two dense geometric tasks:
depth estimation and surface normal estimation. We also
evaluate on two dense object-related tasks: semantic seg-
mentation, and pose estimation. Finally, we report object
classification numbers for completion. We provide below
the details of the datasets, metrics, and protocols used for
fine-tuning and evaluations.

Depth Estimation involves estimating the depth of each
pixel of an input image from the camera. For evaluation,
we use the NYUv2 [25], a dataset of RGB images and their
corresponding ground truth depth maps. It consists of 795
training and 654 test images of indoor scenes. We report
the δ1 metric on the test images - which computes the per-
cent of the pixels with error max(

ypi

ygi
,
ygi

ypi
) less than 1.25,

where ypi
is the depth prediction and ygi is the ground truth

of the ith pixel of an image. We use DPT [29] head as in
MultiMAE for finetuning.

Surface Normals, Edges, Depth, and Curvature Esti-
mation are regression tasks that aim to estimate the orien-
tation, edges, depth, and bend of a 3D surface respectively.
We use a subset of Taskonomy [40] with 800 training im-
ages, 200 validation images, and 54, 514 test images. We
use the L1 loss value on the test set as evaluation metric.

Semantic Segmentation entails assigning a class to each
pixel of an image based on its semantic category. We use
ADE20K [41], with 20, 210 training images and 150 se-
mantic categories, Cityscapes with 19 classes, 2975 train-
ing images, 500 validation images, and 1525 test images,
and NYUv2 dataset with 795 training and 654 test images.

We report the mIOU which quantifies the percentage
overlap between the predictions and the ground truth an-
notations. We use a segmentation head based on Con-
vNext [21] adapter for finetuning.

Classification is a high-level semantic task that involves
assigning a category to an image based on its content. We
use ImageNet-1K[10] which contains 1.28M training im-
ages and 50K validation images. This task allows us to
measure how large the gap is when models are pretrained
for dense tasks in mind. We follow the linear probing pro-
tocol from MAE and report accuracy.

Pose Estimation involves detecting keypoints and their
connections in an image. We use the MSCOCO [20]
dataset for finetuning and report Average Precision and Av-
erage Recall on the validation set. Specifically, we adopt
ViTPose-B [37] for finetuning.

5. Experiments with MIMIC-3M
We evaluate our pre-trained models on two dense geomet-
ric vision tasks – depth estimation and surface normal pre-
diction. MIMIC-3M’s dense representations outperform
both tasks (Tab. 1 )Next, we finetune our encoders for pixel-
level tasks that also require object understanding – seman-
tic segmentation, and pose estimation, and high-level se-
mantic tasks – image classification. For these three tasks,
our experiments demonstrate that models trained using our
automatically generated data close the gap with models
trained on ImageNet-1K (Tab. 2). We further experiment
with the data size used for pretraining and showcase that
more data leads to improvements on depth estimation and
semantic segmentation tasks (Tab. 3). Unlike CroCo trained
on MULTIVIEW-HABITAT, our pre-trained models do not
saturate or degrade over time on depth estimation and se-
mantic segmentation (Fig. 3 (a)). Our performance benefits
also hold as we vary the number of fine-tuning data points
available for both depth estimation and semantic segmen-
tation (Fig. 3 (b)) Finally, we find that our models produce
higher-quality reconstructions using the pretraining decoder
(Tab. 4).
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Table 1. CroCo pretrained with MIMIC-3M outperforms MAE, MultiMAE and DINO pretrained on ImageNet-1K obtained with expen-
sive human annotations and ensured to have diverse categories as well as MULTIVIEW-HABITAT collected using 3D annotations. We report
the results from the CroCo paper (marked with ∗) as well as those with our task-specific fine-tuning setup adopted from MultiMAE.

Model Frozen Dataset NYUv2 (↑) Taskonomy(↓)
depth est. δ1 surface norm. L1 Curv. L1 Edges L1 Depth L1

DINO ImageNet-1K 81.45 65.64 48.25 43.41 38.60
MAE ImageNet-1K 85.1 59.20 41.61 34.97 34.81
MultiMAE ImageNet-1K 86.4 60.86 42.36 52.90 33.40

MAE ✓ MV-HABITAT - - - - -
MAE ✓ MIMIC-3M 80.65 68.97 44.01 33.63 38.46

MAE MV-HABITAT 79.00 59.76 - - -
MAE MIMIC-3M 85.32 58.72 42.71 25.00 30.45

DINO ✓ MIMIC-3M 77.98 74.59 43.77 48.25 36.44
CroCo ✓ MV-HABITAT 85.20∗ (84.66) 64.58 42.66 28.44 34.86
CroCo ✓ MIMIC-3M 85.81 61.70 42.99 25.95 35.85

DINO MIMIC-3M 78.67 65.43 43.37 37.79 36.44
CroCo MV-HABITAT 85.60∗ (90.19) 54.13 41.24 22.90 32.82
CroCo MIMIC-3M 91.79 53.02 41.35 23.96 30.33

+1.60 -1.11 +0.11 +1.06 -2.49

Does MIMIC-3M improve dense geometric tasks? We
finetune our trained models on two dense geometric tasks:
NYUv2 depth estimation and Taskonomy surface nor-
mal prediction. We also finetune the CroCo models
trained on MULTIVIEW-HABITAT using task-specific de-
coders adopted from MultiMAE and report their improved
results.

Even though MIMIC-3M was generated automatically,
without manual intervention, and uses no 3D annotations,
representations pretrained on MIMIC-3M perform better
on both dense geometric tasks (Tab. 1). These gains can
be attributed to the inclusion of real sources–thanks to the
flexibility of our method which allows us to use real-world
videos of complex scenes as a data source.

We also validate the utility of multi-view correspon-
dences by comparing MAE with CroCo models. CroCo
offers significant gains over MAE on MIMIC-3M demon-
strating the benefits of using correspondences during pre-
training (Tab. 1). We observe that CroCo when trained
on MIMIC-3M leads to the state-of-the-art δ1 of 91.79
NYUv2 depth and L1 of 53.02 on surface normals and
performs equally well with model trained on MULTIVIEW-
HABITAT using MIM pretraining.

Does MIMIC-3M pretraining improve dense seman-
tic tasks? To understand the potential of MIMIC for
dense tasks which also require object-level understanding,
we evaluate MAE and CroCo pretrained with MIMIC-3M
on ADE20K, NYUv2, Cityscapes semantic segmentation
and MSCOCO pose estimation (Tab. 2). We observe gains
in comparison to the MULTIVIEW-HABITAT on ADE20K
and MSCOCO. We hypothesize that these improvements
come from the real-world object-centric data from Objec-
tron and Co3D. We also evaluate classification accuracy on
ImageNet-1K. When compared to MULTIVIEW-HABITAT,

MIMIC-3M reduces the linear probing performance gap
by 7.36% with MAE and 2.64% with CroCo on manually
curated, object-centric, and human-annotated ImageNet-
1K.

Does scaling up MIMIC improve finetuning perfor-
mance? We study the scaling effect of MIMIC by vary-
ing the data size. We experiment with two scales: the
first MIMIC-1M with 1.3M image pairs and the second
MIMIC-3M with 3.1M image pairs. We train CroCo
with these two training sets and evaluate the perfor-
mance on depth estimation (NYUv2), semantic segmenta-
tion (ADE20K), and surface normals (Taskonomy) (Tab. 3).
We observe consistent improvements: δ1 by 2.33, mIOU on
ADE20K by 3.73, and L1 loss by 4.10.

Do MIMIC-3M representations quality saturate with
training iterations? In contrast to models trained on
MULTIVIEW-HABITAT, we do not observe performance
saturation or degradation with pretraining iterations (see
Figure 6 in their paper [35]). Instead, the performance
of both MIMIC-1M and MIMIC-3M improves on depth
estimation and semantic segmentation (Fig. 3(a)) for an
iterations-matched training run. This trend holds regardless
of whether the representations are fine-tuned or kept frozen.

This suggests that more training with the cross-view
completion objective helps build better representations for
dense downstream tasks.

Does MIMIC-3M pretraining improve few-shot fine-
tuning? We measure the label efficiency of the learned
representations trained on MIMIC-3M by evaluating its
few-shot performance on NYUv2 depth estimation and
ADE20K semantic segmentation. We freeze the image en-
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Table 2. MIMIC-3M, our automatically generated dataset shows improvements over MULTIVIEW-HABITAT on dense object-related tasks
such as ADE20K semantic segmentation and MSCOCO pose estimation. It even improves on ImageNet-1K classification and further
closes the gap with models pre-trained on ImageNet-1K, curated with expensive crowdsourcing.

Model Pretraining dataset ADE-20K(↑) Cityscapes (↑) NYU(↑) MSCOCO pos. est.(↑) ImageNet-1K cls.(↑)
mIOU mIOU mIOU AP AR % accuracy

DINO MIMIC-3M 37.82 65.57 40.75 70.23 76.40 52.01
MAE MV-HABITAT 40.30 - - - - 32.50
MAE MIMIC-3M 40.54 70.47 43.76 69.13 75.22 39.86

CroCo MV-HABITAT 40.60∗ (41.33) 71.84 47.10 66.50 73.20 37.00
CroCo MIMIC-3M 42.18 71.24 46.61 72.80 78.40 39.64

+0.85 -0.60 -0.49 +6.30 +5.20 +2.64

MAE ImageNet-1K 46.10 73.98 49.12 74.90 80.40 67.45

Table 3. MIMIC-3M shows improvements over MIMIC-1M on
depth estimation (NYUV2), Semantic Segmentation (ADE20K),
Surface Normals Estimation (L1)

Dataset Frozen NYUv2(↑) ADE20K(↑) Taskonomy(↓)
δ1 mIOU L1

MIMIC-1M ✓ 82.67 27.47 67.23
MIMIC-3M ✓ 85.81 30.25 61.70

+3.14 +2.78 -5.53

MIMIC-1M 89.46 38.45 57.12
MIMIC-3M 91.79 42.18 53.02

+2.33 +3.73 -4.10

coder and fine-tune the task-specific decoders by varying
the number of training images. We run each k-shot finetun-
ing at least 5 times and report the mean and the standard
deviation of the runs. For depth estimation, we also experi-
mented with k-shot regimes where k is less than 10. Overall
the representations trained on our MIMIC-3M show better
labeling efficiency than those trained using MULTIVIEW-
HABITAT (Fig. 3(b)). These gains can be attributed to the
diverse, and real-world training data during pretraining.

Does MIMIC-3M pretraining improve reconstruction
quality? We analyze the quality of the reconstructions
trained on MIMIC-3M versus MULTIVIEW-HABITAT. We
use FID scores [17], which indicate how realistic the re-
constructions are and the reconstruction error (L2 loss) in
the original masked image modeling objective. We sam-
ple a test set of 500 images from the Gibson dataset. We
ensure that these images are sampled from the scenes that
are exclusive of MULTIVIEW-HABITAT and MIMIC-3M
pretraining datasets. We mask 90% of each test image and
then compare the quality of the reconstructions (Tab. 4).
Our analysis shows that CroCo trained on MIMIC-3M im-
proves the FID by 12.65 points and reduces the reconstruc-
tion loss on the test set (see Appendix for visualizations).

What are the effects of data sources on MIMIC-
3M representations? To understand the effect of data
sources we experiment with two subsets of MIMIC-3M.

Table 4. MIMIC-3M achieves better FID score and reduces the
reconstruction loss on 500 test images from the Gibson dataset
compared to MULTIVIEW-HABITAT

Model Dataset Reconst. loss (↓) FID score (↓)

CroCo MV-HABITAT 0.357 85.77
CroCo MIMIC-3M 0.292 73.12

First, we train a CroCo model on a 1.8M subset of MIMIC-
3M obtained from three synthetic sources such as HM3D,
Gibson, and Matterport. Second, we train and evaluate
on 1.3M subset of MIMIC-3M constituting real sources
such as Scannet, Mannequin, Objectron, DeMon, Co3D,
and ArKitScenes. Tab. 5 shows the results of these exper-
iments. Interestingly NYUv2 with a model pretrained on
1.3M images achieves better δ1 compared to the one pre-
trained on a larger 1.8M synthetic subset.

6. Discussion
We present MIMIC, an approach to curate large-scale pre-
training datasets from real-world videos and synthetic en-
vironments, geared towards dense vision tasks. Our work
aims to provide a holistic solution that requires no manual
intervention and domain knowledge about the data sources.
We discuss below the limitations and safety considerations
regarding our dataset and lay out opportunities for future
work.

Limitations. There are several limitations of our work.
First, we pretrain CroCo on MIMIC-3M using a fixed-
sized architecture ViT-B/16; model scaling experiments are
outside the scope of this work. Second, our curated dataset
primarily consists of static objects and does not involve dy-
namic scenes. Lastly, MIMIC-3M has a small amount
of object-centric data, and its suitability for object-related
tasks is limited. Including more object-centric sources may
help bridge this gap.

Safety and ethical considerations. While MIMIC uses
publicly available datasets for data curation, we acknowl-
edge that the algorithm can be scaled up to scrape videos
in the wild. We are aware of the privacy, and ethical is-
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Figure 3. (a) CroCo pretrained on MIMIC shows an increasing trend with the number of training epochs. The figure on the left shows
the trends for the fine-tuned and frozen versions of the encoder on NYUv2 depth estimation. The figure on the right shows the trend on
the ADE20K dataset. (b) CroCo pretrained on MIMIC-3M achieves better few shot performance on CroCo pretrained on MULTIVIEW-
HABITAT. The figure on the left shows the few shot performance on the NYUv2 dataset and the figure on the right shows the few shot
performance on ADE20K.

Table 5. CroCo pretrained on smaller MIMIC-REAL achieved higher δ1 on NYUv2 depth estimation compared to larger MIMIC-
SYNTHETIC

Model Dataset Size NYUv2 depth.est.(↑) Taskonomy surf.norm.(↓) ADE20K sem.seg.(↑)

CroCo MULTIVIEW-HABITAT 1.8M 85.60∗ (90.19) 54.13 40.60∗ (41.33)
CroCo MIMIC-3M 3.1M 91.79 53.02 42.18

CroCo MIMIC-SYNTHETIC 1.8M 81.03 60.05 37.52
CroCo MIMIC-REAL 1.3M 84.80 65.35 36.82

sues caused by models trained on large-scale datasets and
the amplification of the biases these models may result in.
As such, we ensure to limit our data sources to only open-
sourced video datasets. Lastly, we recommend the use of
face blurring and NSFW filtering before scraping internet
videos.

Future work. We would like to design methodologies to
mine dynamic videos where epipolar geometric constraints
do not apply, design new objectives for pretraining on image
pairs curated using MIMIC, and evaluate representations
on more diverse tasks. The flexibility of MIMIC makes it
suitable for further scaling it up to even larger pretraining
datasets.
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