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ABSTRACT Diagnosing melanocytic lesions is one of the most challenging areas of pathology with
extensive intra- and inter-observer variability. The gold standard for a diagnosis of invasive melanoma is
the examination of histopathological whole slide skin biopsy images by an experienced dermatopathologist.
Digitized whole slide images offer novel opportunities for computer programs to improve the diagnostic
performance of pathologists. In order to automatically classify such images, representations that reflect the
content and context of the input images are needed. In this paper, we introduce a novel self-attention-based
network to learn representations from digital whole slide images of melanocytic skin lesions at multiple
scales. Our model softly weighs representations from multiple scales, allowing it to discriminate between
diagnosis-relevant and -irrelevant information automatically. Our experiments show that our method
outperforms five other state-of-the-art whole slide image classification methods by a significant margin.
Our method also achieves comparable performance to 187 practicing U.S. pathologists who interpreted the
same cases in an independent study. To facilitate relevant research, full training and inference code is made
publicly available at https://github.com/meredith-wenjunwu/ScAtNet.

INDEX TERMS Convolutional Neural Network, Histopathological Images, Melanocytic Risk Lesions,
Melanoma, Multi-scale, Transformers, Skin Cancer Diagnosis, Whole-slide Image Classification

I. INTRODUCTION

INVASIVE melanoma, with more than 100,000 estimated
new cases in 2021, is one of the most commonly di-

agnosed cancers in the U.S [1]. The “gold standard” for
diagnosis of skin biopsy specimens relies on the visual as-
sessments of pathologists. Unfortunately, diagnostic errors
are common, and even expert pathologists may not reach
consensus on diagnostically challenging cases in many areas
within pathology [2]–[5]. For instance, pathologists disagree
in up to 60% of melanoma in situ and stage T1a invasive
cases [6]. Variability in diagnostic decisions is a serious
problem and can cause substantial patient harm. A computer-
aided diagnostic system can act as a second reader and help
pathologists reduce classification uncertainties.

For a reliable diagnostic system, it is important to obtain
representations that reflect both the content and context of the
input biopsy image. This paper introduces a self-attention-
based deep neural network called the Scale-Aware Trans-
former Network (ScAtNet) for classifying melanocytic skin
lesions in digital whole slide images (WSIs). ScAtNet,
shown in Figure 1, extends the standard transformer model
of Vaswani et al. (2017) to learn representations from biopsy
images at multiple input scales. The key idea is to learn
patch-wise representations independently for each input scale
using a convolutional neural network (CNN), and then learn
inter-patch and inter-scale representations from concatenated
multi-scale contextualized patch embeddings using trans-
formers. This allows our system to learn diagnostic class-
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FIGURE 1: Overview of ScAtNet for classifying skin biopsy images. To learn representations from these large WSIs at
multiple input scales in an end-to-end fashion, ScAtNet factorizes the classification pipeline into three steps. The first step
involves learning local patch-wise embeddings using an off-the-shelf CNN for each input scale independently. In the second
step, ScAtNet learns inter-patch representations using transformers and produces contextualized patch embeddings for each
input scale. In the last step, ScAtNet learns inter-scale representations from concatenated multi-scale contextualized patch
embeddings using another transformer network and produces scale-aware embeddings, which are then classified linearly into
diagnostic categories.

specific representations at different scales and helps improve
the performance. Also, each WSI contains multiple tissue
slices, while usually only one or two tissue slices help pathol-
ogists in diagnosis. We introduce a soft-label assignment
method to (1) reduce the ambiguity between different tissue
slices in a WSI and (2) improve the diagnostic classification
performance.

We demonstrate the effectiveness of ScAtNet on a skin
biopsy image dataset [6]. Experimental results show that
ScAtNet outperforms state-of-the-art methods by a signif-
icant margin. For example, ScAtNet is 8% more accurate
than the method proposed by Chikontwe et al. [7] and 6%
more accurate than the method proposed by Hashimoto et
al. [8]. Importantly, ScAtNet delivers comparable perfor-
mance to 187 practicing pathologists who interpreted the
same test set cases in an independent study.

To summarize, the main contributions of this paper are:
(1) a novel self-attention-based end-to-end framework for
classifying WSIs at multiple input scales (Section III-B), (2)
a soft label assignment method to reduce ambiguities that
arise by assigning the same label to all tissue slices in a
WSI (Section III-C), and (3) experimental results, along with
comparisons with state-of-the-art methods and practicing
U.S. pathologists, demonstrating ScAtNet’s competitive
performance (Section IV).

II. RELATED WORK
ScAtNetwas inspired by the success of several works in the
area of WSI image classification and transformers. We briefly
discuss these approaches in the following sub-sections.

Multiple instance learning (MIL). Convolutional neural
networks (CNNs) are the de facto machine learning-based
method for image classification, including WSIs [9]–[11].

Unlike the images in standard datasets (e.g., ImageNet [12]),
WSIs are orders of magnitude larger and cannot be processed
in an end-to-end fashion using CNNs. The MIL framework
has been widely studied for classifying different types of
WSIs, such as lung [11], kidney [13], and breast [14]. In
general, the input WSI is divided into instances (or patches)
and the same classification label is assigned to all instances
during training. During evaluation, methods such as averag-
ing and majority voting are used to aggregate the information
from all instances in an image and produce an image-level
classification label. Though these approaches are effective,
they learn local instance-wise representations. This work
extends the MIL framework with the transformers of Vaswani
et al. (2017) to learn global representations in an end-to-
end fashion. In our experiments, we compared our method
to the MIL methods of Chikontwe et al. [7] and Hashimoto
et al. [8]. In addition, we compared our system to a standard
patch-based CNN classification framework. Details of these
methods are described in section IV-D.

Patch-based feature aggregation. Patch-based methods
provide a solution to the gigapixel size of WSIs, while
only requiring slide-level labels. However, learning robust
instance representations is challenging due to the ambiguity
in instance-level labels. To address this, many recent methods
[11], [15] adopt a two-step approach that consists of (1)
training an instance encoder for obtaining a prediction score
or low-dimensional features, and (2) learning a model that
aggregates the features extracted by the learned instance
encoder to form instance-level information for slide-level
prediction. Although this approach has had some success, it
often suffers from worse performance when noisy labels are
present, causing the features to not be representative of their
given labels. In our experiments, we compared our method
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with a CNN-based deep-feature-aggregation framework de-
veloped by C. Mercan et al [15]. Details of this method are
described in section IV-D.

Segmentation-based methods. These approaches use se-
mantic information about tissues in a WSI to produce an
image-level decision [16]–[20]. Typically, these approaches
have three steps: (1) produce a tissue-level semantic seg-
mentation mask using CNNs for an input WSI, (2) extract
features, such as distribution of tissues, from these semantic
masks, and (3) produce an image-level decision using the fea-
tures extracted from the semantic masks. These approaches
learn global representations (information from segmentation
masks) and have been found to be more effective than plain
patch- and MIL-based approaches. However, one key chal-
lenge with these approaches is that they require tissue-level
segmentation masks whose collection is challenging, because
(1) domain experts are required for annotations and (2) pixel-
wise annotations on images of gigapixel order is very time
consuming. In contrast, this work introduces a method for
learning global representations from histopathological WSIs
without the need for tissue-level segmentation masks.

End-to-end learning. Recent attempts at WSI classi-
fication focus on designing a single neural network that
aggregates information from the entire image in a single
shot [21], [22]. These methods extend the MIL-based ap-
proach with gradient check-pointing and advanced feature-
fusion methods, such as self-attention. Inspired by model-
level parallelism [9] and gradient check-pointing [23], these
approaches break down the WSI classification pipeline into
multiple stages and cache the intermediate results of CNN
layers during forward and backward passes, allowing the
systems to learn representations in an end-to-end fashion. For
example, Mehta et al. [21] uses the transformers of Vaswani
et al. (2017) to aggregate the information from all instances
in a breast biopsy image, while Pinckaers et al. [22] stitches
the instance-wise feature maps of a prostate cancer image
at a very low-spatial resolution obtained from a CNN to
produce an image-level feature map. ScAtNet extends these
approaches for classifying skin biopsies. Unlike these ap-
proaches that use WSIs at a single scale (typically at a zoom-
level of 10×) for classification, this work proposes a scale-
aware transformer that adapts to and uses the representations
from multiple input scales to achieve higher classification
performance. In our experiments, we compared our method
with a CNN-based end-to-end WSI classification framework
developed by Pinckaers et al. [22], details of this which are
described in section IV-D.

Vision Transformers. The transformers of Vaswani et al.
[24], initially introduced for the task of machine translation
(e.g., [25], [26]), are being explored for modeling images
and computer vision tasks (e.g., [27], [28]). Transformers
use self-attention, which allows the inputs (e.g., words in a
sentence) to interact with each other and learn global repre-
sentations. Carion et al. [29] extended the standard encoder-
decoder network of Vaswani et al. [24] for the task of object
detection. Recent work has extended transformers using a

Input

Transformer Unit

Layer
Norm

Self-
attention

Layer
Norm

Feed-
Forward Output

!	×

FIGURE 2: The transformer network stacks L transformer
units sequentially. Each transformer unit consists of self-
attention and feed-forward modules.

patch-based approach to image recognition at a large scale
[27], [28]. Concurrent work has also utilized transformers
and self-attention to medical image segmentation [30]–[33]
and classification [34].

Motivated by (1) the success of transformers in vision, (2)
the methods for learning representations from different input
scales [35]–[37], and (3) the importance of input scales for
diagnosis in clinical settings [38], [39], we propose a scale-
aware transformer model that adapts to the information from
different input scales using self-attention and predicts the
classification label.

III. METHOD
This section first reviews the architecture of transformers and
then elaborates on the details of the proposed method, scale-
aware transformers (Section III-B), that allows our system
to learn representations from histopathological images at
multiple scales in an end-to-end fashion. In Section III-C, a
soft-labeling method is discussed that reduces the ambiguity
in instance-level (patches) labels and improves the learning
of representations from skin-biopsy images. The software
associated with this work will be made available.

A. TRANSFORMERS
The transformer unit, shown in Figure 2, is comprised of
two modules: (1) self-attention and (2) feed-forward. The
self-attention module allows the inputs to interact with each
other and learn contextual relationships. This layer applies
three projections, with each projection branch having mul-
tiple linear layers to the input I ∈ Rn×e to produce query
(Q), key (K), and value (V) embeddings, where n is the
number of inputs and e is the input dimensionality. A dot-
product between query (Q) and key (K) is computed to
produce an n × n matrix to which a row-wise softmax is
applied to encode relationships between the n inputs. Finally,
a weighted sum is computed between the resultant n × n
matrix and V .

Self-attention(Q,K,V) = (Q ·KT ) ·V (1)

The feed-forward module stacks two linear layers, and
is responsible for learning wider representations. The first
linear layer projects the input to a high-dimensional space,
while the second linear layer projects from the high-
dimensional space to the same dimensionality as that of the
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input. This work extends the transformers model to learn
scale-aware representations from skin biopsy images.

B. SCALE-AWARE TRANSFORMERS
Patch-based CNNs are state-of-the-art WSI classification
methods that allow computer systems to learn representa-
tions from gigapixel size images (e.g. [11], [13], [14], [16],
[40]). One of the main limitations of such systems is that
they learn local representations, since the context capturing
ability of such systems is limited to the patch-level. Another
challenge is learning representations from multiple input
scales. Because of limited GPU memory and the sheer size
of these images, training multi-scale classification systems is
computationally intractable. For example, the average size of
a WSI (11K × 9.5K) in our dataset is 2000 times larger than
the standard image classification dataset: the ImageNet [41]
(224× 224).

Motivated by the recent advancements in computer vision,
especially vision transformers and the importance of input
scales in clinical settings, this paper introduces scale-aware
transformers in ScAtNet, which allows our system to learn
local and global representations from multiple input scales
in an end-to-end fashion. Figure 1 shows the overview of
ScAtNet, which has three main steps: (1) learn local patch-
wise embeddings using a CNN for each input scale, (2) learn
contextualized patch-embeddings for each input scale using
transformers, and (3) learn scale-aware embeddings across
multiple input scales using transformers. These steps are
described below.

Patch embeddings. The input WSI image Xsc ∈ RW×H

at scale sc with width W and height H is divided into m
non-overlapping patches Xsc = (xsc

1 , · · · ,xsc
m), where xsc

i

is the i-th patch with width W√
m

and height H√
m

. Patch-wise
feature representations, referred to as patch embeddings, are
obtained using an off-the-shelf CNN. The patch embedding
PEsc

i ∈ Re for the i-th patch xsc
i is thus:

PEsc
i = CNN (xsc

i ) (2)

Contextualized patch embeddings. The patch embed-
dings PEsc ∈ Rm×e are produced independently for each
patch. In other words, these embeddings PEsc do not encode
inter-patch relationships. These embeddings PEsc are fed
to a transformer to learn inter-patch relationships. Similar
to vision transformers [27], patch-wise sinusoidal positional
embeddings PPEsc ∈ Rm×e are added to PEsc to encode
the position of input patches. The resultant embeddings are
then fed to a transformer to produce contextualized patch
embeddings CPEsc ∈ Rm×e.

CPEsc = Transformer (PEsc +PPEsc) (3)

These contextualized embeddings CPEsc ∈ Rm×e are
then averaged along the m-dimension to produce an e-
dimensional embedding vector CPE

sc ∈ Re. CPE
sc

en-
codes the local (from CNN) and global (from Transformer)
information in an image Xsc.

Contextualized scale embeddings. The embedding
CPE

sc
encodes the information in an image Xsc at scale

sc. Let us assume that we have S scales. For each scale
sc ∈ [0, ...,S ], we produce embedding vector CPE

sc
and

concatenate them to produce scale-level embeddings SE =

Concat(CPE
1
, · · · ,CPE

S
). These embeddings SE ∈

RS×e do not encode information about the relationships
between the different scales. To learn scale-aware representa-
tions while retaining positional information about each scale,
scale-level learnable positional embeddings PSE ∈ Rsc×e

are added1to SEsc×e. The resultant embeddings are then
fed to another transformer to produce contextualized scale
embeddings CSE ∈ Rsc×e.

CSE = Transformer (SE+PSE) (4)

For predicting the diagnostic class, ScAtNet first flattens
the scale-aware embeddings CSE ∈ Rsc×e to produce a
(sc ·e)-dimensional vector and then classifies it using a linear
classifier into C diagnostic categories.

C. SOFT-LABELS FOR SKIN BIOPSY IMAGES
Skin biopsy images often contain multiple tissue slices on a
single WSI, as shown in Figure 4a. In general, the represen-
tative regions-of-interest (ROIs; shown in red in Figure 4a)
that helped pathologists in diagnosis belong to one or two
tissue slices, while the other tissue slices may correspond
to other diagnosis categories. Assigning the same diagnostic
label to all tissue slices (similar to MIL-based approaches)
results in more false tissue-label pairs and hinders learning
representations. To address this, we propose a soft labeling
method, as illustrated in Figure 3.

Given a dataset D with N training WSIs along with rep-
resentative ROIs for each WSI (each WSI contains multiple
slices) that helped in diagnosis, we aim to assign soft labels
to tissue slices that do not have ROIs. Tissue slices from each
WSI are extracted and then categorized into one of the two
sets: (1) tissue slices R with an ROI and (2) tissue slices NR
without an ROI. Since each slice in R has a representative
ROI, we further split R into C subsets, R = {R1, · · · , RC},
based on the diagnostic category, where Ri represents the
subset for diagnostic category i and C denotes the number of
diagnostic categories. Next, we compute the mean singular
value vector s̄i for each subset Ri as:

s̄i =
1

n

n∑
j=1

sji (5)

where sji is the d-dimensional singular-value vector obtained
after applying singular-value decomposition (SVD) to the
j-th tissue slice in Ri. The idea is to use these vectors to
represent the appearance of the diagnostic categories. We

1Unlike the number of patches m, the number of scales S is fixed.
Therefore, we learned the positional embeddings for each scale using
torch.nn.Embedding in PyTorch. Compared to sinusoidal positional embed-
dings, learned embeddings improves the performance by about 0.5-1.0%.
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FIGURE 3: Overview of Soft labels calculation . Diagnostically constrained soft labels are calculated for tissue slices without
an ROI using singular value decomposition (see Section III-C).

used singular values because of their uniqueness and ro-
bustness properties [42]–[45]. However, other dimensionality
reduction methods could also be used.

For the j-th slice in NR, the C-dimensional soft label
vector ŷj is computed as:

ŷj = softmax
(
s̄ · ŝj

)
(6)

where ŝj is a d-dimensional singular value vector obtained
after applying SVD to the j-th tissue slice in NR and s̄ =
{s̄1, . . . , s̄C}.

Tissue slices without an ROI do not help in diagnosis
decisions. Clinically, such slices can often belong to lower
diagnostic categories than the category assigned to the WSI
they are part of. We incorporate this diagnostic constraint in
our soft labeling method. For a four-class dataset (1: MMD, 2:
MIS, 3: pT1a, and 4: pT1b), suppose that a WSI correspond-
ing to class k has m tissue slices and one of the tissue slices
has an ROI, as shown in Figure 4a. Soft label vectors ŷj for
the jth slices without ROI (j ∈ [0,m − 1]) can be obtained
from equation 6. Then, to take one step further, diagnostically
constrained soft label vector ỹj = {ỹj1, ..., ỹ

j
C} is computed

as:

ỹjc =
ŷjc∑k
c=0 ŷ

j
c

, if c < k

ỹjc = 0 if c ≥ k (7)

Figure 4a illustrated an example WSI corresponding to
class 3 (pT1a), which has three tissue slices, and one of
the tissue slices has an ROI. If the soft label vectors ŷj

for these two slices without ROI are [0.46, 0.39, 0.08, 0.07],
[0.21, 0.54, 0.1, 0.15], the resulting soft label vectors with
the diagnostic constraint ỹj are [0.54, 0.46, 0, 0], and
[0.28, 0.72, 0, 0] respectively.

IV. EXPERIMENTAL RESULTS
A. DATASET AND EVALUATION

Skin biopsy dataset and ground truth consensus. The data
used for this study was acquired as a part of the MPATH study
(R01CA151306) and consists of 240 skin biopsy images with
hematoxylin and eosin (H&E) staining [6]. The study was
approved by the Institutional Review Board at the Univer-
sity of Washington with protocol number STUDY00008506.
These biopsy images were interpreted by a consensus panel
of three experienced dermatopathologists using the modified
Delphi approach [46]. The consensus panel assessments were
grouped into five different MPATH-Dx (Melanocytic Pathol-
ogy Assessment Tool and Hierarchy for Diagnosis) [47]
simplified categories based on perceived risk for progression.
These five classes were regrouped to four diagnostic classes
for the classification task in this paper due to limited sample
size in Classes I and II and because the clinical risk for
progression of both Class I and Class II is extremely low.
The diagnostic terms we use for each class are as follows:
1) Class I-II: mild and moderate dysplastic nevi (MMD),
which is very low risk to low risk, 2) Class III: melanoma
in situ (MIS), which is higher risk than MMD, 3) Class
IV: invasive melanoma stage pT1a (pT1a) which is higher
risk for local/regional progression, and 4) Class V: invasive
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(a)

Method Accuracy Specificity AUC

Hard labels 0.50 0.83 0.73
Label smoothing 0.50 0.83 0.71
Constrained label smoothing 0.56 0.85 0.77
Soft labels (Ours; Section III-C) 0.60 0.87 0.77

(b)

FIGURE 4: (a) shows different labeling methods, including our soft label method, for an pT1a skin biopsy image with three
tissue slices and one representative region of interest (red box) that helped expert pathologists in diagnosing the image. (b)
compares the performance of different labeling methods. Our soft labeling method is simple and effective; it reduces the
ambiguity that arises during training because of multiple tissue slices in a WSI that do not have a ROI and helps improve the
performance. In (b), we do not report sensitivity and specificity, because their values are the same as accuracy.

Diagnostic Number of WSIs Average WSI size

Category Training Validation Test Total (in pixels)

MMD 26 6 29 61 11843 × 10315
MIS 25 5 30 60 9133 × 8501
pT1a 33 6 34 73 9490 × 7984
pT1b 18 6 22 46 14858 × 12154

Total 102 23 115 240 11130 × 9603

TABLE 1: Statistics of skin biopsy whole slide image (WSI)
dataset. The average WSI size is computed at a magnification
factor of 10×. Diagnostic terms for the dataset used in this
study are as follows: mild and moderate dysplastic nevi
(MMD), melanoma in situ (MIS), invasive melanoma stage
pT1a (pT1a), invasive melanoma stage ≥ pT1b (pT1b).

melanoma stage ≥ pT1b (pT1b) which is the greatest risk
for regional and/or distant metastases. We randomly split 240
WSIs into 102 training, 23 validation and 115 test WSIs (see
Table 1). Additionally, the consensus panel of three expe-
rienced dermatopathologists marked in total 240 regions of
interest (ROIs) that best defined the diagnostic classification
of each case during the review process. Information about
these ROIs was used to produce soft labels for the training
set (Section III-C).

Outcome metrics. The performance of ScAtNet is eval-
uated in terms of the following standard quantitative met-
rics: (1) classification (or Top-1) accuracy, (2) F1 score,
(3) sensitivity, (4) specificity, and (5) area under receiver
operating characteristic curves (ROC-AUC). The values of
these metrics range between zero and one, and higher values
of these metrics mean better performance. Multi-class F1 and
specificity have the same value as accuracy.

Accuracy data from U.S. pathologists. To compare the
results from ScAtNet with the interpretations of practicing
U.S. pathologists, we used data from a prior clinical study in
which 187 pathologists interpreted the same WSIs [6]. Each
pathologist interpreted a random subset of 36 cases, and their
diagnoses were classified into the same four diagnostic cate-
gories. This resulted in 10 independent diagnostic labels (on

an average) per slide and provided a way to compare the clas-
sifications performed by human pathologist to ScAtNet.
These interpretations are only used for independent evalua-
tion. The ground truth diagnosis of each slide is the consensus
diagnosis of three experienced dermatopathologists.

B. IMPLEMENTATION DETAILS
Extracting tissue slices from WSIs. The original WSIs
were collected at a zoom level of 40×. Because WSIs at
40× require extensive computational resources, we extracted
WSIs at lower zoom levels of 7.5× (average size 8348 x
7202), 10× (average size 11130 x 9603), and 12.5× (average
size 13913 x12003). These zoom levels were selected based
on previous work on histopathological image classification
for different tissues [11], [16], [40], since they provide a
good tradeoff for 1) capturing sufficient local context without
including irrelevant details and 2) providing variable local
information without losing similar correlation. We refer to
different zoom levels as “input scales" in this work. Each
WSI has multiple tissue slices with a background region
between the slices that does not aid in diagnosis (Figure
4a). Therefore, individual tissue slices were extracted using a
histogram-based segmentation method of Otsu [48] followed
by morphological operations (opening-closing and hole fill-
ing) and contour-related operations available in OpenCV.

Soft-labels. To assign soft labels for tissue slices without
an ROI, SVD is applied to obtain d-dimensional singular-
value vectors as described in the Methods section. In this
study, d is set to 50.

Architecture. We use MobileNetv2 [49] pretrained on
the ImageNet dataset [41] as our CNN for extracting patch-
wise embeddings. MobileNetv2 was chosen, because it is
light-weight, fast, and delivers state-of-the-art performance
across different machine vision tasks, such as classification,
detection, and segmentation. ScAtNet is not limited to a
particular CNN and other CNNs, such as VGG [50] and
ResNet [10] may also be suitable for extracting patch-wise
embeddings.

MobileNetv2 outputs 1280-dimensional patch-wise em-
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beddings after global average pooling. ScAtNet projects
these patch-wise embeddings linearly to a 128-dimensional
space (e = 128) and then learns contextualized patch-wise
and scale-wise embeddings using transformers. For learning
contextualized patch-wise and scale-wise representations, a
stack of two transformer units is used. Also, in each trans-
former unit, the number of heads in the self-attention layer
is set to 4, and the feed forward network dimension is set to
512.

C. TRAINING DETAILS
ScAtNet is trained for 200 epochs in an end-to-end fashion
using the ADAM optimizer with a linear learning rate warm-
up strategy and step learning rate decay. The learning rate is
first warmed up from 10−6 to 5 × 10−4 in 500 steps. In the
next 50 epochs, the model is trained with a learning rate of
5×10−4. After that, the learning rate is reduced by half at the
100-th and 150-th epochs. Because of the large size of these
images, extensive computational resources are required. To
learn representations with limited computational resources,
we freeze the convolutional layers in a CNN and train only
the transformer networks. Our models are trained on a single
NVIDIA GeForce 2080 GPU with 10 GB GPU memory.
Similar to other medical imaging datasets, our dataset is
small. Therefore, to improve its robustness against stochastic
noise, we average best 3 and best 5 model checkpoints within
a single training process [51] and select the one that performs
best on the validation set. We then evaluate it on the (unseen)
test set. A WSI in a test set may contain multiple tissue slices.
To predict the final diagnostic label, we use max-voting. This
choice is inspired by pathologists’ diagnosing behavior, i.e.,
if one of the tissue slices in a WSI is invasive melanoma, then
the entire WSI corresponds to invasive melanoma and cannot
be MMD or MIS.

D. BASELINE METHODS
ScAtNet’s performance is compared with five recent whole
slide image classification methods.

Patch-based classification. The first method is a standard
patch-based CNN classification framework that was built
following saliency-based methods, related to the work of Hou
et. al. [11] and that of E. Mercan et al. [39], (R1 and R2 in
Table 2). This method treats each patch independently and
assigns the same diagnostic label to all patches in the WSI
during training. During evaluation, majority-voting is used
for predicting the slide-level diagnostic label. Similar to the
use of ScAtNet, Mobilenetv2, pretrained on the ImageNet
dataset was used as the CNN model.

Weighted feature aggregation. The second method is
a CNN-based deep feature extraction framework developed
by C. Mercan et al. [15] that builds slide-level feature rep-
resentations via weighted aggregation of the patch repre-
sentations (R3 and R4 in Table 2). Under this framework,
feature extraction is performed in three steps: (1) using
a CNN (e.g. VGG16) to extract features on a patch-by-
patch basis; (2) concatenating the weighted instances of

the extracted feature activations using either penultimate
layer features (penultimate-weighted) or hypercolumn fea-
tures (hypercolumn-weighted) to form patch-level feature
representations; and (3) fusing the patch-level representations
via average pooling to form the slide-level representation.

ChikonMIL. The method of Chikontwe et al. (Chikon-
MIL) (R3 in Table 2) [7] first selects the top-k patches, and
then uses these patches for instance- and bag-representation
learning. This method also uses a center loss that reduces
intra-class variability and a soft assignment to learned diag-
nostic centroid for final diagnosis.

MS-DA-MIL. Multi-scale Domain-adversarial Multiple-
instance (MS-DA-MIL) CNN developed by Hashimoto et al.
[8] (R7 and R8 in Table 2) is a framework that learns from
groups of patches extracted different scales (x10 and x20)
with attention mechanism. However, in contrast to the pro-
posed end-to-end learning framework, MS-DA-MIL-CNN
first trains a single-scale MIL network to classify for each
scale. Then, a multi-scale network is trained using the fea-
tures extracted using pre-trained single-scale MIL networks.

Streaming CNN. Streaming CNN is a work of Pinckaers
et al. [22] (R4 in Table 2). This method uses a patch-based
approach with gradient checkpointing and streaming, which
allows it to classify whole slide images in an end-to-end
fashion.

E. RESULTS
Hard vs. soft labels. The performance of our soft labeling
method (Section III-C) is compared with three other labeling
methods. For illustration, for the four classes in our dataset
(1: MMD, 2: MIS, 3: pT1a, and 4: pT1b), we use a WSI
corresponding to pT1a (class 3; shown in Figure 4a) with 3
slices, one having a ROI.

• Hard labels: Similar to MIL-based approaches, all tis-
sue slices in the WSI are assigned the same diagnostic
label. For the above example, each tissue slice will have
a label of [0, 0, 1, 0] (one-hot vector encoding).

• Label smoothing: The label smoothing method of
Szegedyet et al. [52] produces soft labels that are a
weighted average of the hard labels and the uniform
distribution over labels. It regularizes the network and
helps improve the performance [53]. For the same ex-
ample, the soft labels for each of these slices would be
[0.033, 0.033, 0.9, 0.033] with a label smoothing value
of 0.1. In other words, the label for class 3 is smoothed
from 1 to 0.9 and the remaining mass of 0.1 is equally
distributed among the remaining three classes.

• Constrained label smoothing: This extends the hard
labels and label smoothing methods by incorporating
the diagnostic constraint that tissue slices without a
ROI should belong to lower diagnostic categories. For
example, if the WSI has a hard label of pT1a (i.e. class
3), then the tissue slices without a ROI can only belong
to lower diagnostic categories (i.e., MMD and MIS). For
the same example as above, the slice with an ROI will
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have a label of [0, 0, 1, 0] while the slices without an
ROI will have constrained labels of [0.5, 0.5, 0, 0].

Figure 4a contrasts our soft labeling method with these meth-
ods while quantitative comparison between these methods is
given in Figure 4b. These experiments demonstrated that our
soft labeling method is more effective as compared to these
existing methods. In subsequent experiments, we use our soft
labeling method.

Impact of number of patches m. Figure 5 compares
the performance of single scale ScAtNet with different
numbers of crops m at three different input resolutions (7.5×,
10×, and 12.5×). Using fewer crops at larger resolution (e.g.,
25 crops at a resolution of 12.5×) and more crops at smaller
resolutions (e.g., 81 crops at a resolution of 7.5×) hurts the
performance. This is likely because MobileNetv2, the CNN
used in this work, is pre-trained on the ImageNet dataset at a
fixed image size of 224×224. With very large (fewer number
of crops at larger image resolution) or very small (larger
number of crops at smaller image resolution) patch sizes,
the CNNs may have difficulty in capturing representative
features and yield poor patch embeddings, which hurts the
performance. We note that scaling patch size alone may not
be an optimal solution and future studies, especially com-
pound model scaling in EfficientNet [54], may help improve
the performance.

In the rest of the experiments, we used m = 25 for 7.5×
input resolution, m = 49 for 10× input resolution, and
m = 81 for 12.5× input resolution, as these had the best
performance.

Single vs. multiple input scales. Figure 6a compares the
overall performance of ScAtNet across different metrics on
single- and multi-scale inputs, while class-wise accuracy is
given in Figure 6b. With inputs at multiple scales, we observe
improvements in overall as well as class-wise performance.
Notably, we observe significant improvement with multiple
scales (two and three scales) in the pT1b invasive melanoma

25 49 81 121 169 225
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FIGURE 5: Effect of number of crops (m) on the perfor-
mance of ScAtNet (single scale) for inputs at three different
scale levels (7.5×, 10×, and 12.5×).

Input scales Accuracy F1 Sensitivity Specificity AUC
7.5× 10× 12.5×

✓ 0.55 0.55 0.55 0.85 0.75
✓ 0.60 0.60 0.60 0.87 0.77

✓ 0.61 0.61 0.61 0.87 0.78

✓ ✓ 0.64 0.64 0.64 0.88 0.79
✓ ✓ 0.63 0.63 0.63 0.88 0.80

✓ ✓ 0.63 0.63 0.63 0.88 0.79

✓ ✓ ✓ 0.63 0.63 0.63 0.88 0.79

(a) Overall performance of ScAtNet
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(b) Class-wise accuracy of ScAtNet

FIGURE 6: Effect of single and multiple input scales. For
single and multiple input scales, we compared the overall
performance of ScAtNet across different metrics in (a)
while in (b), we compared the class-wise accuracy. With
multiple input scales, overall and class-wise performance,
especially in invasive cancer categories (pT1a and pT1b), of
ScAtNet improved across all evaluation metrics. Diagnos-
tic terms are defined as the following: mild and moderate
dysplastic nevi (MMD), melanoma in situ (MIS), invasive
melanoma stage pT1a (pT1a), invasive melanoma stage ≥
pT1b (pT1b).

cancer category. Compared to two scales, the overall perfor-
mance with three scales remains the same. However, with
three scales, the performance across all diagnostic classes
(Figure 6b) is much more evenly distributed, which is not
seen in all other combinations.

Comparison with baseline methods. Figure 2 compares
the classification performance of ScAtNet with existing
methods on the test set. ScAtNet outperforms all five ex-
isting methods to which it was compared by a significant
margin across different metrics. Furthermore, compared to
the ChikonMIL method [7] and the MS-DA-MIL method
[8] with multi-scale input, which delivered the two best per-
formances among the five baseline methods, ScAtNet de-
livered better performance across all diagnostic categories
(see Figure 7), except the pT1b category. This is likely be-
cause the ChikonMIL method samples more relevant patches
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Row # Method Accuracy F1 Sensitivity Specificity AUC

R1 Patch-based (SSC) 0.35 0.35 0.35 0.79 0.67
R2 Patch-based (MSC) 0.40 0.40 0.40 0.80 0.68
R3 Penultimate-weighted (SSC) 0.44 0.44 0.44 0.81 0.67
R4 Hypercolumn-weighted (SSC) 0.43 0.43 0.43 0.43 0.67
R5 Streaming CNN (SSC) 0.32 0.32 0.32 0.77 0.58
R6 ChikonMIL (SSC) 0.56 0.56 0.56 0.85 0.74
R7 MS-DA-MIL (SSC) 0.49 0.49 0.49 0.83 0.68
R8 MS-DA-MIL (MSC*) 0.58 0.58 0.58 0.86 0.75

R9 ScAtNet (SSC) 0.60 0.60 0.60 0.87 0.77
R10 ScAtNet (MSC) 0.64 0.64 0.64 0.88 0.79

TABLE 2: Comparison of overall performance with state-of-the-art WSI classification methods across different metrics on the
test set. Here, SSC denotes single input scale (10×). MSC denotes multiple input scales (7.5×, 10×, 12.5×). MSC* denotes
multiple input scales (10×, 20×)

MMD MIS pT1a pT1b
Diagnostic Category
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MS-DA-MIL (MSC)
Ours (7.5x + 10x)

FIGURE 7: Comparison of class-wise accuracy with state-
of-the-art WSI classification methods on the test set. Diag-
nostic terms are defined as the following: mild and moderate
dysplastic nevi (MMD), melanoma in situ (MIS), invasive
melanoma stage pT1a (pT1a), invasive melanoma stage ≥
pT1b (pT1b). Overall, ScAtNet delivered better perfor-
mance across all diagnostic categories except the pT1b cate-
gory.

corresponding to the pT1b category as compared to other
diagnostic categories, while the MS-DA-MIL method uses
an input at higher resolution (x20), which might yield more
information at the cellular level that helped to distinguish the
pT1b category. We believe that complementing the proposed
method with the patch sampling method of Chikontwe et
al. (2020) would further improve the performance. We will
investigate such methods in the future.

Comparison with U.S. pathologists. Table 3 shows that
ScAtNet achieves similar performance to practicing U.S.
pathologists who interpreted these same cases in overall
accuracy (pathologists vs. ScAtNet: 0.65 vs. 0.64), sug-
gesting its potential as a second reader to help pathologists
in clinical settings for reducing classification uncertainties.

Diagnostic Accuracy F1 Sensitivity Specificity

Category PG Ours PG Ours PG Ours PG Ours

MMD 0.92 0.79 0.71 0.75 0.92 0.79 0.76 0.89
MIS 0.46 0.40 0.49 0.44 0.46 0.40 0.85 0.84
pT1a 0.51 0.65 0.62 0.63 0.51 0.65 0.95 0.84
pT1b 0.72 0.77 0.72 0.74 0.78 0.77 0.97 0.92

Overall 0.65 0.64 0.65 0.64 0.65 0.64 0.88 0.88

TABLE 3: Comparison of ScAtNet with pathologists’
(PG) performance. Pathologists’ performance data is from
a prior independent clinical study of 187 pathologists [6]
who interpreted these same 115 cases in our test set (Table
1). Diagnostic terms are defined as the following: mild and
moderate dysplastic nevi (MMD), melanoma in situ (MIS),
invasive melanoma stage pT1a (pT1a), invasive melanoma
stage ≥ pT1b (pT1b).

V. DISCUSSION
Previous studies on computer-aided skin lesion analysis have
been mainly focused on using dermoscopic images due
to its inexpensiveness and availability [55]–[57]. Although
dermoscopic images showed improvement for diagnosis of
skin cancer compared to bare visual inspection, the gold
standard for the diagnosis of melanocytic lesions is the in-
terpretation of histopathology slides. There has been limited
application of deep learning techniques in whole slide skin
biopsy images due to their gigapixel size and the lack of
large public datasets. Earlier studies analyzing whole slide
skin biopsy images using deep learning have focused on
dermis and epidermis segmentation, as well as two- or three-
class classification problems. For example, Phillips et al.
[58] explored segmentation of dermis and epidermis as well
as tumor segmentation using convolutional neural network
with a dataset of 50 WSIs (Training/validation/test: 36/7/7).
Hekler et al. [59], [60] studied the binary classification of
nevi vs. melanoma with a dataset of 695 WSIs (Training/Test:
595/100). Similarly, Lu and Mandal [61] and Xu et al. [17]
performed a three-way classification task (17 normal skin,
17 melanocytic nevi, and 32 superficial spreading melanoma)
using 66 WSIs. Note that the dataset used by Lu and Mandal
et al. [61] and Xu et al. [17] is much smaller than ours and
limited to only two of our classes, making direct comparison
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impossible.
Unlike these studies, this work classifies the full spectrum

of melanocytic skin biopsy lesions ranging from mildly atyp-
ical nevi and more advanced atypical pre-cursor lesions, to
melanoma in situ to invasive melanoma. Our dataset consists
of 240 WSIs, including 115 WSIs in an independent test set
(Table 1). An independent test set allows us to demonstrate
the generalization ability of ScAtNet. A key strength of our
work is that we were able compare the diagnostic classifica-
tion of ScAtNetwith the performance of actively practicing
U.S. pathologists who interpreted the same cases (test set) in
an independent study.

Although the proposed method has shown great potential
for automated melanocytic lesion classification, limitations
are recognized. Our study is only relevant to melanocytic
lesions, while only about one in four skin biopsies have
melanocytic cells [62]. Moreover, despite having an indepen-
dent test set, ScAtNet was evaluated on only 115 WSIs.
In order to demonstrate its application in clinical settings,
ScAtNet should be tested on a larger test set. Also, in this
paper, we only studied skin biopsies. However, we believe
that ScAtNet is generic and can be extended to other types
of biopsy images, such as breast and lung.

VI. CONCLUSION
Diagnosis of melanocytic lesions is among the most chal-
lenging areas of pathology. Previous studies indicate that
diagnostic errors occur frequently [3]–[5]. False positive
readings for suspected melanoma range from 6% to 17%
[63], [64]. Diagnostic errors may lead to inappropriate treat-
ment decisions and harm to patients. With FDA approval,
digitized whole slide imaging systems show great potential
for improving the diagnostic performance of pathologists.
In this paper, we introduce the scale-aware transformer net-
work ScAtNet for learning representations from variably-
sized whole slide skin biopsy images at multiple scales.
Compared to existing methods, ScAtNet delivered better
performance. Importantly, ScAtNet also delivered compa-
rable performance to practicing U.S. pathologists who in-
terpreted the same cases. The implementations of the mod-
els we use and algorithms we introduce are available at
https://github.com/meredith-wenjunwu/ScAtNet.

VII. APPENDIX
a: Outcome metrics
The following metrics were used to evaluate the performance
of ScAtNet [65]:

• Classification (or Top-1) accuracy counts the number of
times the predicted label is the same as the ground truth
label and is defined as:

Accuracy =
TP

TP + FP + TN + FN
where TP, FP, TN, and FN denotes the true positive,
false positive, true negative, and false negatives respec-
tively.

• F1-score is a harmonic mean of precision P and recall
R and is defined as:

F1-score =
2PR

P +R

where P = TP
TP + FP and R = TP

TP + FN .
• Sensitivity measures proportion of the positive cases

that are correctly classified and is defined as:

Sensitivity =
TP

TP + FN
• Specificity measures the proportion of the negative

cases that are correctly classified and is defined as:

Specificity =
TN

TN + FP
• Area under receiver operating characteristics curve

(ROC-AUC) is a graph obtained by varying the thresh-
old for diagnostic decision, illustrating the discrimi-
nation ability of the classifier. We use a One-vs-rest
scheme, which computes the AUC of each class against
the rest [66].

The values of these metrics range between zero and one, and
higher values of these metrics mean better performance.

A. SALIENCY ANALYSIS
Saliency analysis using gradients helps identify relevant areas
in an input image that contributed to the prediction [67].
Figure 8 shows that both 7.5× and 10× contributed to
the decision in the cases of MMD and pT1a, while 12.5×
contributes more in the cases of MIS and pT1b. This pattern
illustrates that depending on the input whole slide image,
diagnosis-specific features exist at different input scales and
ScAtNet learns to weigh these features automatically.

B. ROC CURVES
In Figure 9, we compared the Receiver Operating Charac-
teristic (ROC) curves of the proposed method with different
numbers of input scales. With a single scale, the overall area
under the curve (AUC) score as well as the class-wise AUC
score of invasive cancer categories (pT1a and pT1b) improve
with larger input scale. With two scales, we observed the
best performance in the combination of the smallest and the
largest scale (7.5× and 12.5×).

a: Comparison of baseline methods
In Figure 10, we compared ROC curves of the baseline meth-
ods. The MS-DA-MIL method of Hashimoto et al. [8] deliv-
ered the best AUC score, compared to the weighted feature
aggregation method by C. Mercan et al. [15], ChikonMIL
method by Chikontwe et al. [7], the patch-based classification
method [11], [39] and the Streaming CNN method [22]. With
multiple input scales, the patch-based method did not show
significant improvement in AUC score, but the performance
across all classes is more evenly distributed.
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FIGURE 8: Visualization of gradient in ScAtNet. The left column shows original whole slide images in all diagnostic
categories: mild and moderate dysplastic nevi (MMD), melanoma in situ (MIS), invasive melanoma stage pT1a (pT1a), invasive
melanoma stage ≥ pT1b (pT1b). The right two columns are the corresponding gradient maps calculated from 7.5× and 12.5×
input scales. All examples shown were correctly classified into their diagnostic categories. Colors from purple to yellow are
assigned to values between 0 and 1.
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FIGURE 9: Receiver operating characteristic (ROC) curves of ScAtNet with different numbers of input scales. For a single
scale (a-c), the performance improves with the input scale, especially for invasive cancers. For two scale combinations (d-f),
we do not observe significant gains. However, a combination of smaller and larger input scales (7.5× and 12.5×) delivered
good performance across all diagnostic classes. Diagnostic terms are defined as the following: mild and moderate dysplastic
nevi (MMD), melanoma in situ (MIS), invasive melanoma stage pT1a (pT1a), invasive melanoma stage ≥ pT1b (pT1b).
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FIGURE 10: Comparison of ROC curves with state-of-the-art WSI classification methods on the test set. Here, SSC denotes
single input scale (10×). MSC denotes multiple input scales (7.5×, 10×, 12.5×), while MSC* denotes 10×, 20×. Overall, the
MS-DA-MIL method of Hashimoto et al. [8] delivers the best performance of all other existing methods. Diagnostic terms are
defined as the following: mild and moderate dysplastic nevi (MMD), melanoma in situ (MIS), invasive melanoma stage pT1a
(pT1a), invasive melanoma stage ≥ pT1b (pT1b).
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