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ABSTRACT
In this paper we describe a new 3D object signature and eval-
uate its performance for 3D object retrieval. The signature
is based on a learning approach that finds the characteristics
of salient points on a 3D object and represents the points in
a 2D spatial map based on a longitude-latitude transforma-
tion. Experimental results show that the signature is able to
achieve good retrieval scores for both pose-normalized and
randomly-rotated object queries.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.3.1 [Information Storage and
Retrieval]: Content Analysis and Indexing

General Terms
Algorithms, Performance

Keywords
3D object retrieval, 3D object signature, salient points

1. INTRODUCTION
With the recent advancement in technology for digital ac-

quisition of 3D models, there has been an increase in the
availability and usage of 3D objects in a number of fields,
including medical applications, architectural research, and
engineering research. As a result, there is a large collection
of 3D objects available. This motivates the need to be able
to retrieve 3D objects that are similar in shape to a given 3D
object query. Current techniques for text retrieval, 2D image
retrieval, and video retrieval cannot be directly translated
and applied to 3D object shape retrieval, as 3D objects have
different data characteristics from other data modalities.

Shape-based retrieval of 3D objects is an important re-
search topic. The accuracy of a shape-based retrieval system
largely depends on finding a good descriptor that is able to
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represent the local and global characteristics of the 3D ob-
ject. In this paper, we describe our method of representing
a 3D object and its use in a content-based retrieval system.
We use a learning approach to identify the interesting local
features or salient points on a 3D object, and we represent
these feature points in a 2D spatial map. Retrieval of 3D
objects is then performed by comparing the 2D spatial map
of a query to the 2D maps of all the objects in the database
and retrieving the database objects in order of the similarity
of their 2D maps to the query.

The rest of this paper is organized as follows. We first
discuss existing shape descriptors and their limitations. We
then describe our data acquisition process. Next we describe
our method for learning the salient points of a 3D object.
We then describe a 2D longitude-latitude map signature that
captures the pattern of the salient points. Finally, we ex-
plain and analyze the results from our experiments and pro-
vide a summary and suggestions for future work.

2. RELATED WORK
Content-based 3D object retrieval has received increased

attention in the past few years due to the increased number
of 3D objects available. There have been several survey
papers on the topic [15, 4, 6], and recently researchers in
the area have taken the initiative to organize an annual 3D
shape retrieval evaluation called the SHREC - 3D Shape
Retrieval Contest, whose general objective is to evaluate the
effectiveness of 3D shape retrieval algorithms. Del Bimbo
et al. [3] presented a comparative analysis of a number of
different descriptors in retrieving 3D models from digital
archives. No one descriptor performed the best for all kinds
of retrieval tasks. Each descriptor had its own strength and
weakness across retrieval tasks.

There are three broad categories of 3D object represen-
tations: feature-based methods, graph-based methods, and
other representations, such as the medial axis representa-
tion. Feature-based methods, which are the most popular,
can be further categorized into (1) global features, (2) global
feature distributions, (3) spatial maps, and (4) local fea-
tures. Local features are often the salient points of a 3D
object, computed in various ways. Most methods use the
curvature properties of the 3D object to find the salient
points on the surface of the object [17, 7]. Castellani [5]
proposed a new methodology for detection and matching of
salient points based on measuring how much a vertex is dis-
placed after filtering. The salient points are then described
using a local description based on Hidden Markov Models
(HMM), and HMM similarity measures are used for the 3D



object retrieval. Ohbuchi et al. [11] rendered multiple views
of a 3D model and extracted local features from each view
image using the SIFT algorithm. The local features were
then integrated into a histogram using a bag-of-features ap-
proach to retrieval. Novatnack et al. [10, 9] extracted corners
and edges of a 3D model by first parameterizing the surface
of a 3D mesh model on a 2D map and constructing a dense
surface normal map. They then constructed a discrete scale-
space by convolving the normal map with Gaussian kernels
of increasing standard deviation. The corners and edges de-
tected at individual scales were then combined into a unified
representation for the 3D object.

Assfalg et al. [1] captured the shape of a 3D object us-
ing the curvature map of the object’s surface. The model
surface is first warped into a sphere, and curvature informa-
tion is then mapped onto a 2D image using the Archimedes
projection. Retrieval of 3D objects is performed by compar-
ing the 2D map of the query object against the 2D maps of
the database models using a histogram-based search and a
weighted walkthrough of the map regions. Our method is
quite related to that of [1], but it differs from theirs in that it
does not use curvature information directly. Instead it uses
a classifier to find salient points and labels them according
to the classifier prediction scores. It then uses the longitude
and latitude positions of salient points on the object’s sur-
face to create a 2D signature. A classifier is trained on these
2D map signatures for classification and retrieval purposes.

3. DATA ACQUISITION
The 3D objects used in our experiments were obtained by

scanning hand-made clay toys with a Roldand-LPX250 laser
scanner with a maximal scanning resolution of 0.008 inches
for plane scanning mode [12]. Raw data from the scanner
consisted of clouds of 3D points that were further processed
to obtain smooth and uniformly sampled triangular meshes
of 0.9-1.0 mm resolution.

Fifteen objects were originally scanned to create a 7-class
database. In this work we focus on heads of different classes
and shapes to emphasize the repeatability of the method.
The seven classes are: cat head, dog head, human head, rab-
bit head, horse head, tiger head and bear head. Each of the
fifteen objects were randomly morphed using the 3D Studio
Max operators for tapering, twisting, bending, stretching,
and squeezing to increase the database size. A total of 250
morphed models per original object were created. For this
work, we used 75 morphed models from each of the original
objects for training and testing the classifier. Points on the
morphed models are in full correspondence with the original
models from which they were constructed.

In addition to the heads, we also performed retrieval ex-
periments on a subset of the SHREC 2008 Classification
Database.

4. LEARNING SALIENT POINTS
Our methodology starts by applying a low-level operator

to every point on the surface mesh. The low-level operators
extract local properties of the surface points by computing a
single feature value vi for every point pi on the mesh surface.
In this work, we will use the absolute values of the Gaussian
curvature for our experiments. The low-level feature val-
ues are convolved with a Gaussian filter to reduce the noise.
Figure 1a shows an example of the absolute Gaussian cur-
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Figure 1: (a) Absolute Gaussian curvature low-level
feature value and (b) Smooth low-level feature val-
ues after convolution with the Gaussian filter.

vature values of a 3D model and Figure 1b shows the results
of applying a Gaussian filter over the low-level values.

After this first step, every point pi on the surface mesh
will have a low-level feature value vi. The second step per-
forms mid-level feature aggregation to compute a number
of values for a given neighborhood of every point pi on the
surface mesh. In this work, we use a local histogram to
aggregate the low-level feature values of each point. The
histograms are computed by taking a neighborhood around
each point and accumulating the low-level features in that
neighborhood. The size of the neighborhood is determined
by multiplying a constant c, 0 < c < 1, with the diagonal
of the object’s bounding box. This ensures that the size of
the neighborhood is scaled according to the object’s size and
that the results are comparable across objects. The aggre-
gation results in a d-dimensional vector fi for every point
pi on the surface mesh, where d is the number of histogram
bins. For our experiments, we used d = 250 and c = 0.05.

Because we were not satisfied with the salient points com-
puted by standard interest operators (eg. Kadir’s entropy
operator and Lowe’s SIFT operator applied to 3D), we chose
to teach a classifier the characteristics of points that we re-
gard as salient. Histograms of low-level features are used to
train a Support Vector Machine (SVM) classifier [13, 16] to
learn the salient points on the 3D surface mesh. We used the
SVM implemented in WEKA for our experiments [18]. The
training data for supervised learning for the classifier are ob-
tained by manually marking salient and non-salient points
on the surface of each training object. An average of 12
salient points and 12 non-salient points were marked on the
training objects. Since our current database contains head
shapes (human heads, wildcat heads, bear heads etc), the
salient points that were chosen included the tip of the nose,
corners of the eyes, corners and midpoints of the lips, etc.
The histogram of low-level features of each of the marked
points were saved and used for the training. Figure 2 shows
examples of manually marked salient and non-salient points
on the training data. Since the morphed models were in to-
tal correspondence with the original model, we only had to
manually mark the original models.

A small training set, consisting of 25 morphs of the cat
head model, 25 morphs of the dog head model, and 50
morphs of human head models was used to train the classi-
fier to learn the characteristics of the salient points in terms
of the histograms of their low-level features. After training
is complete, the classifier is able to label each of the points
of any 3D object as either salient or non-salient and provides
a confidence score for its decision. A threshold T is applied
to the confidence scores for the salient points. In our experi-
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Figure 2: Examples of manually marked salient
(blue color) and non-salient (red color) points on
(a) cat head model, (b) dog head model, and (c)
human head model.

(a) (b) (c)

Figure 3: Salient point prediction for (a) cat head
class, (b) dog head class, and (c) human head class.
Non-salient points are colored in red, while salient
points are colored in different shades ranging from
green to blue, depending on the classifier confidence
score assigned to the point. A threshold (T = 0.95)
was applied to include only salient points with high
confidence scores.

ments, we used T = 0.95 to keep only the salient points with
high confidence scores from the classifier. Figure 3 shows re-
sults of the salient points predicted on instances of the cat,
dog and human head class. The salient points are colored
according to the classifier confidence score assigned to the
point. Non-salient points are colored in red, while salient
points are colored in different shades of blue with dark blue
having the highest prediction score. While the classifier was
only trained on cat heads, dog heads, and human heads, it
does a good job of finding salient points on the other classes
of heads, and the 3D patterns produced are quite repeatable
across objects of the same class.

5. 2D LONGITUDE LATITUDE MAP SIG-
NATURE

Most 3D object classification methods require the use of a
3D descriptor or signature to describe the shape and proper-
ties of the 3D objects. Our signature is based on the salient
point patterns of the 3D object mapped onto a 2D plane via
a longitude-latitude transformation.

Before mapping the salient point patterns onto the 2D
plane, the salient points are assigned a label according to
the classifier confidence score assigned to the point. The
classifier confidence score range is discretized into a number
of bins. For our experiments, at confidence level 0.95 and
above, we chose to discretize the confidence score range into
5 bins. Each salient point on the 3D mesh is assigned a label
based on the bin into which its confidence score falls.

To obtain the 2D longitude-latitude map signature for an
object, we calculate the longitude and latitude positions of

(a) (b) (c)

Figure 4: Salient point patterns on 3D objects
of Figure 3 and their corresponding 2D longitude-
latitude map signatures.

all the 3D points on the object’s surface. Given any point pi

(pix, piy, piz), the longitude position θi and latitude position
φi of point pi are calculated as follows:

θi = arctan(
piz

pix

) φi = arctan(
piy

p

(p2

ix + p2

iz)
)

where θi = [−π, π] and φi = [−π

2
, π

2
].

A 2D map of the longitude and latitude positions of all
the points on the object’s surface is created by binning the
longitude and latitude values of the points into a fixed num-
ber of bins. A bin is labeled with the salient point label of
the points that fall into that bin. If more than one label is
mapped to a bin, the label with the highest count is used
to label the bin. Figure 4 shows salient point patterns for
the cat head, dog head, and human head model of Figure 3
and their corresponding 2D map signatures. Figure 5 shows
how different objects that belong to the same class will have
similar 2D longitude-latitude signature maps.

6. 3D OBJECT RETRIEVAL
By creating a signature for each of the 3D objects, we are

able to perform similarity-based retrieval for all the objects
in the database. Retrieval of 3D objects in the database is
done by calculating the distance between the 2D longitude-
latitude map signature of a query object and the 2D longitude-
latitude map signatures of the objects in the database. We
treat the 2D maps as vectors and use Euclidean distance as
the distance measure.

The retrieval performance is measured using the average
normalized rank of relevant images [8]. The evaluation score
for a query object q is calculated as follows:

score(q) =
1

N · Nrel

(

Nrel
X

i=1

Ri −
Nrel(Nrel + 1)

2
)

where N is the number of objects in the database, Nrel is the
number of database objects that are relevant to the query
object q (all objects in the database that have the same class
label as the query object), and Ri is the rank assigned to the
i-th relevant object. The evaluation score ranges from 0 to
1, where 0 is the best score as it indicates that all database
objects that are relevant are retrieved before all other objects
in the database. A score that is greater than 0 indicates that
some nonrelevant objects are retrieved before all relevant
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Figure 5: Objects that are similar and belong to the same class will have similar 2D longitude-latitude
signature maps.

objects. Our experiments are divided into two parts: pose-
normalized retrieval and rotation-invariant retrieval.

6.1 Pose-Normalized Retrieval
For the pose-normalized retrieval experiments, all objects

in the database were rotated to face forward and have the
same orientation. For these experiments, the database con-
sisted of 105 objects which were categorized into 7 classes:
cat head, dog head, human head, rabbit head, horse head,
wildcat head, and bear head. The retrieval performance was
measured over all 105 objects using each in turn as a query
object. We performed two different retrieval experiments for
the pose-normalized experiments on our head data.

For the first retrieval experiment, when calculating the
evaluation score for a query object, the relevant objects were
defined to be those objects that are morphed versions of
the query object. This resulted in 15 relevant labels for
the database. The algorithm was able to obtain a score
of 0 for almost all the queries, except for one of the horse
head queries that obtained a score of 0.00136054. For this
horse query, a morphed version of a different horse head was
returned at rank 6 before the last morphed version of the
query horse. Since the two horses had different labels, the
retrieval score was not zero.

The second retrieval experiment had a similar setup to the
first experiment. The difference was in categorizing which
objects were to be considered relevant to the query object.
For this experiment, the relevant objects were all objects
in the same general class: human, cat, dog, horse, rabbit,
wildcat, and bear heads. This resulted in a total of 7 rele-

class mean stddev

cat head 0 0
dog head 0 0
human head 0 0
rabbit head 0 0
horse head 0.064 0.069
wildcat head 0.263 0.046
bear head 0 0

Table 1: Pose-normalized retrieval experiment 2:
the mean and standard deviation of the evaluation
scores for all 7 head classes. The objects in the ex-
periments were pose normalized, and the relevant
objects were all objects that belonged to the same
general class.

vant labels instead of 15. All the scores are extremely low
with the exception of the wildcat head. Table 1 shows the
mean and standard deviation of the evaluation scores for
each class, using each object in the database as a query.

We also tested the performance of our 2D longitude-latitude
signature map for retrieval on a subset of the SHREC2008
Classification Database [14]. Our database consisted of 100
models pre-classified into three different levels of catego-
rization ranging from a coarse level to a very fine level of
categorization. The objects in the database were pose nor-
malized, so that objects that belong to the same class were
in the same orientation. The salient points on the SHREC
2008 database objects were identified using the same classi-



Class # Class Name # Objects Mean Stddev

1 human-diff-pose 17 0.422 0.213
2 four-legged-animal 12 0.313 0.066
3 hourglass,chess-piece 13 0.431 0.133
4 knots 8 0.021 0.008
5 plane,heli,missile 12 0.421 0.063
6 pipes,spiral 19 0.283 0.062
7 vase,bottle,teapot 19 0.252 0.029

Table 2: Pose-normalized retrieval experiment 3:
the mean and standard deviation of the evaluation
scores for the SHREC 2008 database with coarse
categorization.

Class # Class Name # Objects Mean Stddev

1 human-dif- pose 12 0.457 0.171
2 toy-diff-pose 5 0.356 0.274
3 4-legged-long-tail 3 0.347 0.163
4 4-legged-animal 9 0.254 0.051
5 hour-glass 2 0.15 0.212
6 chess piece 2 0.05 0.071
7 statues 9 0.354 0.218
8 knots 4 0.028 0
9 torus 4 0.052 0.021
10 airplane 6 0.252 0.078
11 heli 4 0.059 0.019
12 missile 2 0.233 0.159
13 rounded-pipe-part 1 0 -
14 square-pipe-part 5 0.187 0.024
15 long-pipe-part 2 0.068 0.018
16 spiral 7 0.262 0.023
17 scissor 3 0.238 0.238
18 wheel 1 0 -
19 vase 4 0.179 0.041
20 bottle 5 0.063 0.055
21 teapot 2 0.215 0.134
22 mug 4 0.141 0.078
23 vase with handle 4 0.425 0.064

Table 3: Pose-normalized experiment 4: the mean
and standard deviation of the evaluation scores for
the SHREC 2008 database with mid-level catego-
rization.

fier that was trained on the head database. No additional
training on salient points was performed. The retrieval per-
formance was measured over all 100 objects using each in
turn as a query object. We calculated the retrieval score
mean and standard deviation for each class for each level
of categorization. The coarse categorization divided the ob-
ject into 7 classes, while the mid-level categorization had
23 class labels. The finest level of categorization was too
fine and resulted in many single-object classes, which were
not useful when evaluating the retrieval performance. In
this work, we show the retrieval performance for the coarse-
level and mid-level categorization. Table 2 shows the mean
and standard deviation retrieval scores for the coarse-level
categorization, while Table 3 shows the mean and standard
deviation retrieval scores for the mid-level categorization.

Figure 4 shows a retrieval example using a subset of the
SHREC 2008 classification database. The query object is
a four-legged animal. The results show that the top four
retrieved objects also belong to the four-legged-animal class,
and that the signatures obtained for these animals are quite
similar. The next retrieved object at rank 5 is a pipe part
whose orientation is similar to these four-legged animals and

Query name Query object Query signature

24

Retrieval results:

Rank Name 3D Object Signature Dist

1 23 54.09

2 25 55.34

3 22 55.8

4 28 57.45

5 70 60.83
... ... ... ... ...

100 13 178.54

Table 4: Retrieval example using a subset of the
SHREC 2008 Classification Database. The query
example is one of the four-legged animal. The top
four retrieved object are also four-legged animals.

had salient points detected in similar locations (front and
back of the pipe) as the four-legged animals.

6.2 Rotation-Invariant Retrieval
Most 3D objects created for databases and applications

are not pose normalized; hence it is essential for our ap-
proach to be rotation invariant. The 2D signatures we gen-
erate are dependent on the location and orientation of a 3D
coordinate system associated with the model. To achieve ro-
tation invariance, we created multiple rotations of each 3D



object from which we generated new 2D longitude-latitude
signatures. We showed in prior work [2] on object classifica-
tion that classification accuracy decreased as a function of
number of rotations per objects in the training set. For the
head database, we found that accuracy was above 90% for
rotations generated at 100 degree increments. Therefore, in
this paper, the rotated versions were generated at 100 degree
increments for all three axes resulting in 4 × 4 × 4 rotated
signatures for seven morphs of each of the fifteen original ob-
ject in the database. A total of 6720 rotated signatures were
stored in the database. Retrieval was performed by calculat-
ing the distance between the query object signature and all
the rotated signatures in the database. The retrieval algo-
rithm then selected the best rotated signature for each orig-
inal object and returned the object at that rotation. Hence,
each query retrieval had 15 × 7 = 105 objects returned in
order of similarity.

We ran two experiments to test the rotation invariance
properties of the retrieval using randomly-rotated objects as
the queries. These rotations could be at any angles (θx, θy, θz)
about the 3 axes, not just at multiples of 100 degrees, so the
maps could be quite different from those in the database.
We generated 10 rotations per query object resulting in 1050
queries in total. The experiments differed in how the rele-
vant objects were categorized. The first experiment evalu-
ated relevant objects that were a morphing version of the
query object, while the second experiment used the general
class label for the relevant object’s label. Table 5 and Table 6
shows the mean and standard deviation of the evaluation
scores for these two experiments. For the first experiment,
most of the non-relevant retrievals were actually morphed
versions of objects in the same general class. For example,
when querying on human head 1, some morphed versions of
human head 2 and human head 3 were retrieved before the
rest of human head 1. Similar scenarios happened for the
leopard, tiger and lion head queries. When querying with a
leopard head, some morphed versions of the tiger and lion
heads were returned before all relevant leopard head models
were returned. In the second experiment, when querying
with a leopard head, some bear heads were retrieved before
all leopard heads had been retrieved.

Table 7 shows an example of a retrieval. The query for
the retrieval is a human head that is randomly rotated at
rotation angle (188,164,139). The evaluation score for this
query was 0.276 in the first experiment and 0.019 in the
second experiment. The results show that all the human
heads in the database were retrieved before the rest of the
objects. Table 8 shows another good retrieval example. The
query for the retrieval is a rabbit head that is randomly
rotated at angle (345,304,278). The evaluation score for this
query was 0 in both experiments. Note that the retrieval
results may be at a different rotation than the query, since
we only stored rotations in 100 degree increments about each
axis.

Table 9 shows an example of incorrect retrieval results.
The query for this retrieval was a leopard head that was
randomly rotated with angles (64,4,146). The evaluation
score for this retrieval was 0.571429 in the first experiment
and 0.64723 in the second experiment. The results show that
the first object retrieved was actually a bear head, and that
the first leopard head object in the database was retrieved
at rank 29.

class label mean stdev

cat 0.274 0.151
dog 0.345 0.307
human-1 0.192 0.114
human-2 0.1677 0.109
human-3 0.0619 0.063
human-4 0.058 0.045
human-5 0.072 0.049
rabbit-1 0.249 0.253
rabbit-2 0.165 0.165
horse-1 0.242 0.168
horse-3 0.087 0.137
leopard 0.268 0.280
tiger 0.165 0.216
lion 0.093 0.125
bear 0.204 0.188

Table 5: Rotation-Invariant Retrieval Experiment
1: The mean and standard deviation of the evalua-
tion scores for all 15 classes. The query objects for
the retrieval were randomly rotated and the rele-
vant objects were all morphed versions of the query
object.

class label mean stdev

cat 0.274 0.151
dog 0.345 0.307
human 0.009 0.013
rabbit 0.197 0.156
horse 0.326 0.187
wildcats 0.258 0.208
bear 0.201 0.188

Table 6: Rotation-Invariant Retrieval Experiment 2:
The mean and standard deviation of the evaluation
scores for all 7 head classes. The query objects for
the retrieval were randomly rotated and the relevant
objects were based on general classes.

7. CONCLUSIONS AND FUTURE WORK
We have described a learning approach to 3D object re-

trieval. Supervised learning is performed on selected salient
points on the training data. The classifier learns the char-
acteristics of the salient points and is able to predict salient
points on new objects. The patterns of the salient points are
used to train a second classifier by transforming the patterns
to a 2D map using the longitude-latitude transformation to
produce a 3D object signature. Using a simple Euclidean
distance function between two 2D map signatures, we are
able to perform similarity-based retrieval for 3D objects.
Experimental results show that the signature can be used
to retrieve similar objects to a query both for objects that
are pose normalized and those that are rotated randomly.

We are investigating clustering the rotated signatures in
the database to further reduce space usage and computa-
tion time so that we can add more objects and classes. We
are also working on the use of a multi-class classifier as a
first step before performing retrieval. Given a query ob-
ject, the trained classifier is used to predict the best class
labels for the query. Distance computation is then only per-
formed between the query and database objects that are



Query name Query object Query signature Retrieval name Retrieval Object Retrieval signature Dist

leopard head 30 bear head 2 28 100.4
rotated(64,4,146) rotated(45,0,45)

Table 9: Example of incorrect retrieval results. The query for the retrieval is a leopard head rotated at angle
(64,4,146). The top retrieved object is a bear head, which does show similarity to the leopard head.

in the predicted classes. In addition, we are working on
finding a mapping function between two longitude-latitude
signatures. This will eliminate the need to generate rotated
versions of the database object signatures and will allow us
to handle much larger databases.
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Query name Query object Query signature

human 1 29
rotated
(188,164,139)

Retrieval results:

Info Name 3D Object Signature

Rank= human 3 26
1 rotated

θx=0
Dist= θy=0
77.91 θz=0

Rank human 3 31
2 rotated

θx=0
Dist= θy=0
78.15 θz=0

Rank= human 3 27
3 rotated

θx=0
Dist θy=0
78.26 θz=0

... ... ... ...
Rank= horse 1 28
29 rotated

θx=0
Dist= θy=0
89.03 θz=100

... ... ... ...
Rank= wildcat 27
105 rotated

θx=100
Dist= θy=300
115.97 θz=300

Table 7: Retrieval example using human head ro-
tated at angle (188,164,139) as the query. The hu-
man heads in the database were all retrieved before
other objects in the database.

Query name Query object Query signature

rabbit 1 27
rotated
(345,304,278)

Retrieval results:

Info Name 3D Object Signature

Rank= rabbit 1 30
1 rotated

θx=0
Dist= θy=300
84.33 θz=300

Rank= rabbit 1 27
2 rotated

θx=0
Dist= θy=300
84.34 θz=300

Rank= rabbit 1 26
3 rotated

θx=0
Dist θy=300
84.59 θz=300

... ... ... ...
Rank= horse 1 28
15 rotated

θx=0
Dist= θy=300
94.91 θz=300

... ... ... ...
Rank= lion 31
105 rotated

θx=0
Dist= θy=300
114.9 θz=300

Table 8: Retrieval example using rabbit head ro-
tated at angle (345,304,278) as the query. The rab-
bit heads in the database were all retrieved before
other objects in the database.


