
A Model Browser for Biosimulation

G. Yngve1, M.S., J.F. Brinkley2, M.D., Ph.D.,

D. Cook2, M.D., Ph.D., L.G. Shapiro1, Ph.D.
1Department of Computer Science and Engineering

2Department of Biological Structure

University of Washington, Seattle, WA, U.S.A.

ABSTRACT

The complexities of biological simulation present

difficulties with modeling and experimenting.

Simulators process models represented as code,

whereas biologists think about abstract mod-

els. Our ModelBrowser addresses this difficulty

through interactive visualization. Variables and

equations appear as a directed graph of nodes and

edges, and the user can search and browse this

graph by performing queries on metadata associ-

ated with the variables and the connectivity of the

edges. The browser also supports a hierarchical

categorization of the variables, such as by an on-

tology. We believe that the ModelBrowser will help

biologists reason about code in the context of the

abstract model, so that they can understand and

modify others’ code and debug their own.

INTRODUCTION

Biological simulation is a fast-growing field today
with a wide range of applications. Researchers
are generating bigger and more complex models,
and they are sharing them with each other. Many
challenges are arising, including debugging, tun-
ing, and validating a model, as well as sharing,
publishing, and merging models. There need to be
better ways to reason about models beyond perus-
ing source code, which is often cryptic or poorly
documented. In this paper we describe our Model-
Browser, which is a visualization application that
assists the researcher in reasoning about a model
through interaction with a graph of the model.

Our test example is a cardiovascular model with
baro- and chemoreceptor feedback; it represents
anatomy as a lumped network. The lumps (nodes
in the network) represent homogenized individual
anatomical parts or aggregates at various scales,
and the connectivity (edges) represents physiol-
ogy such as flow or control. Variables and equa-
tions range from tangible to abstract. The lumped
network represents state and behavior from fluid
dynamics to chemical reactions, drawing analo-
gies from L-R-C electrical circuits. A lump en-
codes several variables of different physical prop-

Figure 1: Overview of a large model using a pie
layout. Parameters and variables are color-coded
by scientific unit and clustered by module. Arrows
show dependencies.

erties, such as pressure, volume, and flow. Other
variables exist too, including temporary variables
that hold common subexpressions or observational
variables such as vital signs.

Realized into code, the model has around 300
parameters, 300 time-dependent variables, and
300 equations, of which 60 are differential. The
variables use 25 different physical units. The de-
veloper divided the code into eleven sections. The
module tags followed the sections that the devel-
oper already partitioned. The hierarchy that we
created for this model contains 75 terms and has a
depth of six, and most nodes in the hierarchy have
six to twelve children. Most of the hierarchical re-
lationships are part-of, but some are is-a or ad-
dress functionality. Previously, the model already
had description tags; we worked with the devel-
oper to add module and anatomy tags. Figure 1
is a screenshot of our system showing the whole
model. The different sections are pie wedges. The
circles are parameters (outer) and variables (in-
ner), and the arrows represent dependencies. An
excerpt of code from the model is in Figure 2.



real Ro = 0.025 mmHg*sec/ml;

Ro.system = "systemic circulation";
Ro.anatomy = "vena cava";

Ro.desc = "Vena cava resistance offset parameter";

real Rvc(t) mmHg*sec/ml;

Rvc.module = "systemic circulation";
Rvc.anatomy = "vena cava";

Rvc.desc = "Resistance of Vena cava";

Rvc = (KR*(Vmax_vc/Vvc)^2) + Ro;
// Vena cava: Lu et al. Eq.(4)

Figure 2: Excerpt of code from the test model
showing declarations of a parameter and a vari-
able, each with metadata, and an equation.

By interacting with our visualization, one can
answer questions about the model such as,

• “Show me the equations for just the fluid dy-
namics portions of the model,”

• “Does the model have baroreceptors in the
aorta or the carotids or both?”

• “Do the lungs exert pressure on the heart?”

• “What parameters tweak the P-V curves?”

• “In the model, what are the paths of blood
through the cardiovascular system?”

We first describe related work, then we present
the features of the ModelBrowser, and finally we
conclude and discuss future work.

RELATED WORK
The creators of CellML9 recognized the need
for a standard medium that was both human-
and computer-readable and could aid in exchang-
ing cellular models, a task previously costly and
fraught with error. They discussed three forms
of model representation: high-level conceptualiza-
tion, mathematical model, and computer code.
The high-level conceptualization reads as prose
but is insufficient to rigorously define the model,
whereas the computer code lacks the semantic in-
formation of the model. CellML is an open-source
markup language for defining mathematical mod-
els of cellular function to help bridge the gap be-
tween computational and mathematical models.
Our ModelBrowser lets one reason more mathe-
matically about a computational model by visual-
izing it and allowing interactions on the qualitative
information and graph connectivity.

Johnson8 posed the need for integrated model-
ing environments as an important problem, not-
ing that visualizations are often considered af-
terthoughts to the model and simulation. Cook et

al.4 proposed using ontologies to generate code for
models through an icon-based GUI. They noted
that much physiology obeys canonical equations,
such as resistance or capacitance laws. Rubin et
al.11 followed, using both canonical and custom
equations to recreate a cardiovascular model; us-
ing this technique they discovered several errors
and inconsistencies in the original model. Cook3

later developed Chalkboard, a graphical model-
ing tool for pathways that lets the user analyze
feedback qualitatively, and automatically gener-
ates quantitative simulation code. The Physiome
Project7 has spawned several visualization pack-
ages, e.g. CMGUI and SCIRUN, mostly aimed at
scientific visualization. Spotfire1 seminally showed
the power of the dynamic query; it uses data with-
out any strong underlying topology, whereas our
system takes advantage of the irregular hierar-
chical and adjacency networks present in model
equations. Pathway Analytics, commercial soft-
ware produced by TeraNode13, offers a full suite
for the domain of biological pathways using model
authoring, collaborating, simulating and analyz-
ing, incorporating lab data, and visualizing.

Holten’s work on hierarchical edge bundles6 re-
duces clutter and enhances clarity in graphs con-
sisting of both hierarchical and adjacency relation-
ships. His algorithm renders edges as translucent
B-splines using nodes in the hierarchy as control
points. Transparency helps multiple edges be dis-
cernible, even when superimposed. Color gradi-
ent indicates edge direction, which has less clut-
ter than arrows. A bundling strength adjusts how
edges are grouped by straightening the control
points; the user can can vary it interactively to
obtain low- or high-level connectivity information.

MODELBROWSER
The ModelBrowser is a step toward giving the
developer better tools for reasoning about mod-
els that have been implemented into code. The
browser consists of an index of displayed vari-
ables on the left, a legend of colors on the right,
and in the center the graphical representation of
the model. Nodes represent variables from the
code, and edges represent dependencies from the
equations. The interface provides easy naviga-
tion through a complex graph, such as traversing
neighbors or pruning irrelevant parts.

Our visualization runs as a plugin to JSim1, a
Java-based simulation system for building quanti-
tative numerical models and analyzing them with
respect to experimental reference data. JSim can

1http://www.physiome.org/jsim/



Figure 3: View of flow variables. Note the clump
of P-V curve parameters at 7-o’clock.

constrain units in equations to be balanced, and it
supports the embedding of metadata in the model
file, as part of JSim’s mathematical modeling lan-
guage. JSim’s capabilities are focused toward bi-
ological simulation, and it can import SBML and
CellML models. The ModelBrowser uses Prefuse,5

a Java-based toolkit for building interactive infor-
mation visualization applications.

Metadata
The ModelBrowser can filter, color, cluster, or
merge variables based on metadata associated
with the model. The ModelBrowser reaches its full
potential when the variables of the model possess
a variety of metadata tags that can carry a variety
of extra information. Some of these tags are part
of JSim’s math modeling language, such as units,
datatypes, and comments, but others need to be
defined explicitly, such as anatomical, physiologi-
cal, or organizational tags. Tagging the variables
does put extra work onto the developer on par
with what is required to document code with a
tool such as JavaDoc, but the benefits are huge
and would likely save time in the long run. The
tags give the user more fields to search and sort
so that filtering and coloring can reveal interesting
patterns. For our test model, we had metadata for
unit, datatype, module, comment, and anatomy,
of which the latter three were tagged explicitly.

Hierarchies
Hierarchies add significant meaning and capabil-
ity to code. Though a computer scientist might be
capable of designing a carefully architected object-
oriented system, the same cannot be expected of a
biologist writing a model. Furthermore, a biolog-
ical model may have more interconnections than
the average software. Thus a modular or hierarchi-

cal structure can enrich a flat list of equations and
variables by using metadata to assign variables to
entries in a hierarchy, perhaps derived from an on-
tology. In our case, an extra XML file holds the
application hierarchy for the model. We are pur-
suing novel tools for developing hierarchies that
build from existing ontologies such as the FMA.10

Dependencies
Each equation in the model consists of a lefthand
variable and a righthand expression, which in turn
consists of several terms, either implicitly or ex-
plicitly. The JSim compiler parses the simulation
code and exposes these dependencies, needed for
compilation and execution, to the plugin devel-
oper. The variables are represented visually as
nodes, and the dependencies as edges. For exam-
ple, the equation F = m·a would have three nodes
and two edges, with arrows from m and a to F .

INTERACTION
The ModelBrowser has three types of interaction,
as categorized by Card, et al.2. We illustrate the
use of our tool with several screenshots.
Data Transformations
Data transformations operate on the data itself,
but rather than doing an SQL query, the user can
point and click through friendlier interfaces. For
each field of discrete metadata, the user can select
checkboxes for which values to show or hide. The
system evaluates the conjuction over all the fields.
If a filtered node becomes invisible, any edges go-
ing to or from it likewise become invisible. The
user can select a set of children in a hierarchy to
hide or unhide. To remind the user that nodes
are hidden in the hierarchy, the number of hidden
nodes is displayed in the tree index, as is done
in Jambalaya12. Figure 3 shows the variables fil-
tered to just pressure, flow, volume, and their time
derivatives, using hierarchical edge bundles.

Our system can display details on nodes by se-
lection either in the index or on the graph. When
focusing on a node, the user can load equations,
graphs, and other details for the node.
Visual Mappings
Our system supports coloring of nodes based on
discrete values in the variables’ metadata. Each
value is mapped to a color, explained by a legend.
Around thirty different colors can be displayed be-
fore shades become hard to discern. Most meta-
data are treated as-is, but units are colored by
their canonical form, i.e. ignoring dimensionless
constants (e.g. cubic meters and liters are both
volume and are colored the same). The system
also colors nodes based on connectivity, using dif-
ferent color channels to represent whether a node



Figure 4: Full model, hierarchical edge bundling.

has zero, one, or more dependencies, or is a de-
pendency of zero, one, or more nodes. The system
also allows filtering on the in- and out-degrees of
nodes, as if they were also metadata.
Visual Transformations
Several visual transformations map the graph,
with the hierarchy expanded to some degree, to
an interactive diagram.
Expansion / Contraction. The hierarchy can
be expanded or contracted by navigating through
the tree on the index or by clicking on a node and
telling it to expand or contract if legal. When a set
of nodes are contracted, any dependencies inside
the set disappear. Dependencies to or from an
outside node are redirected to the contracted node.
Expansion is an undo of contraction. Figure 4 is
fully expanded, and Figure 5 is mostly contracted.
When no hierarchy is present, contraction can be
performed on metadata to merge like nodes.
Layout. We have implemented two different
types of layouts for nodes and edges. The ici-
cle layout emphasizes the dependencies across the
hierarchies, whereas the pie layout optimizes the
arrangement of nodes for dependencies within a
group. The pie layout is space-filling and is best
for giving an overview of the variables.

The icicle layout represents arbitrary hierarchies
by concentric rings growing inward. For this lay-
out, we implemented hierarchical edge bundles6

to render edges, as discussed in related work. Di-
rected edges go from blue to red. Figure 4 shows a
visualization of the full model, with bundling de-
faulted to 0.75. We don’t do any node rearrange-
ment here because the layout is intended for edges
across hierarchies, though it could have some ben-
efit in Figure 5. Because of the shallower hierarchy
and fewer edges, the user chose to reduce bundling

Figure 5: Summary view of model with hierarchy.
Baro- and chemoreceptor ins/outs are clear.

to 0.3 and increase the opacity of the edges. Fig-
ure 5 shows how the baroreceptors sense the aorta
and affect the heart and systemic arteries, and the
chemoreceptors sense the blood in the aorta and
affect the respiratory system.

The pie layout fills the variables into areas that
are wedges of a pie, such that pie consists of a uni-
form density of nodes. The pie layout supports a
partitioning just one level deep. A discrete opti-
mization permutes nodes within a group to mini-
mize the sum of squared edge lengths, which cre-
ates a much cleaner layout. Edges are rendered
as straight lines with arrows, so that color can be
used for other purposes. The system can put pa-
rameters further from the center than variables or
intermix them. Figure 6 shows the advantage of a
pie layout with edge optimization. The coronary
circulation forms a nice chain of flow propagation.

Focus and Other Interaction. The user can
also explore the in- and out-neighbors for a node
recursively or browse feedback loops for a node.
When focusing on a node and its neighbors, edges
are highlighted and colored based on direction,
and labels appear on the nodes, temporarily hid-
ing unrelated nodes. Hovering pops up a tooltip
that displays information on the variable. Figure 7
shows focusing on the set of merged baroreceptor
variables and looking at second neighbors. In the
screenshot, the user also loaded details of the equa-
tions associated with baroreceptors.

The whole system supports smooth panning and
zooming on the graphs, and transitions are an-
imated when possible to establish temporal co-
herency. For the hierarchical edge bundling, slid-
ers exist to adjust bundling and opacity.



Figure 6: Interactions between anatomical parts,
mostly fluid flow. Layout optimizes paths.

CONCLUSIONS AND FUTURE WORK

We built the ModelBrowser to aid the researcher in
reasoning qualitatively about a model specified in
code. By interactively navigating graphs, filtering
variables, and hierarchically browsing, a user can
answer many questions that would be hard oth-
erwise with just the source code. We have shown
our tool to several bioengineers and have gotten
positive feedback; a user study is next. We plan
on both timing users and having a questionaire to
evaluate insight for several tasks, such as answer-
ing the questions posed in the introduction. We
also would like to try other models, especially ones
involving metabolic pathways or ion channels.

Most of the queries in the ModelBrowser oper-
ate on nodes, and we would like to explore queries
on edges and neighborhoods too. Many models
contain canonical equations that are instantiated
many times, e.g. conservation of flow. We would
like to have a novice interface for searching for such
equations, or be able to detect repeated patterns
of equations. Advanced queries could aid in bug
hunting or explaining auto-generated code.

We would like to extend the ModelBrowser to
reason about a model quantitatively, by enabling
dynamic queries on simulation data, visualizing
sensitivity analysis, and clustering variables with
similar behavior. In addition to being a generic
model browser, we would like to focus our tool
for specific tasks such as debugging or parameter
tuning. Funded in part by NIH grant HL087706.

REFERENCES

1. C. Ahlberg and B. Schneiderman. Visual informa-
tion seeking: Tight coupling of dynamic query fil-
ters with starfield displays. In Proc. of CHI, 1994.

Figure 7: Exploring connectivity of baroreceptor
module. All baroreceptor equations are shown.

2. Stuart K. Card, Jock D. Mackinlay, and Ben
Schneiderman. Readings in Information Visualiza-
tion: Using Vision To Think. Morgan Kaufmann
Publishers, Inc., 1999.

3. Daniel L. Cook, John H. Gennari, and Jesse C. Wi-
ley. Chalkboard: Ontology-based pathway model-
ing and qualitative inference of disease mechanisms.
Pac Symp Biocomput, 12:16–27, 2007.

4. Daniel L. Cook, Jose L. V. Mejino, and Cornelius
Rosse. Evolution of a foundational model of physi-
ology: Symbolic representation for functional bioin-
formatics. MEDINFO, 11:336–340, 2004.

5. Jeffrey Heer, Stuart K. Card, and James A. Lan-
day. prefuse: a toolkit for interactive information
visualization. In ACM CHI, 2005.

6. Danny Holten. Hierarchical edge bundles: Visual-
ization of adjacency relations in hierarchical data.
IEEE Trans. on Vis.&Comp. Graphics, 12(5), 2006.

7. Peter Hunter. Modeling human physiology: IUPS /
EMBS physiome project. Proc. IEEE, 94(4), 2006.

8. Chris Johnson. Top scientific visualization research
problems. IEEE Comp. Gr.&Apps., 24(4), 2004.

9. Catherine M. Lloyd, Matt D.B. Halstead, and
Poul F. Nielsen. CellML: its future, present and
past. Prog. Biophys.&Mol. Bio., 85:433–450, 2004.

10. Cornelius Rosse and Jose L. V. Mejino Jr. A refer-
ence ontology for biomedical informatics: the foun-
dational model of anatomy. Journal of Biomedical
Informatics, 36:478–500, 2003.

11. Daniel L. Rubin, David Grossman, Maxwell Neal,
Daniel L. Cook, James B. Bassingthwaighte, and
Mark A. Musen. Ontology-based representation of
simulation models of physiology. In AMIA Annual
Symposium Proceedings, 2006.

12. M. A. Storey, M. Musen, J. Silva, C. Best, N. Ernst,
R. Fergerson, and N. Noy. Jambalaya: an interac-
tive environment for exploring ontologies. In Intl
Conference on Intelligent User Interfaces, 2002.

13. Teranode. Leveraging pathway analytics for life sci-
ences research and development, 2005.


